ATCC – SOPHISTICATED APPROACHES TO IN VITRO RESEARCH

John Pulliam Ph.D. Field Application Scientist February 6th 2014

THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED*

ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- ATCC serves and supports the scientific community with industry-standard products and innovative solutions
- World's leading biological resource center and provider of biological standards
- Broad range of biological materials
 - Microorganisms
 - Cell lines
 - Derivatives
 - Bioproducts

ATCC: Keystone of biological research

Standardized methods and verified materials to support credible research results

Species verification

-Cytochrome C Oxidase (COI)

Morphology

Characterization

Viability testing -MTT Kit (ATCC[®] 1010K[™]) -XTT Kit (ATCC[®] 1011K[™])

Analysis of cell growth -Kinetics -Optimized media

Sterility Testing

BacT3D/ALERT

Virus testing

-HIV, HepB, CMV, HPV, EBV

Mycoplasma testing service (ATCC[®] 119-X)

-Direct culture

-Hoechst staining

Universal Mycoplasma Detection Kit (ATCC[®] 30-012K[™])

Continuing to expand opportunities for *in* vitro discovery

ISO approved Life Science Standards

Specific media formulations developed to optimize cell growth

Cell authentication, characterization, and quality control testing

Outline

HEKPlus Protein Expression System

The changing landscape of diagnostics

- Next-generation sequencing has spawned new drug development paradigms
- Large scale sequencing programs
 - The Cancer Genome Atlas
 - International Cancer Genome Consortium (ICGC)
 - Catalogue of Somatic Mutations in Cancer (COSMIC)
 - Cancer Cell Line Encyclopedia

Tumor Cell Panels: investigating the complexity of genetic alterations in disease

Organization of panels by tissue and mutation

Gene

ATCC[®]

11

ATCC Tumor Cell Panels

genetic alterations

ATCC Tumor Cell Panels

THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED"

ATCC[°]

COLON CANCER PANELS 1 AND 2

Colon Cancer Panel 1, KRAS (ATCC® No. TCP-1006[™]) is comprised of eight colon cancer cell lines. Seven of the eight cell lines carry a KRAS mutation as well as other mutations with varying degrees of genetic complexity.

Colon Cancer Panel 2, BRAF (ATCC® No. TCP-1007[™]) is comprised of eight colon cancer cell lines. Six of the eight cell lines carry a BRAF mutation in addition to mutations in other genes. The table below provides more information for the cell lines included in each panel.

	ATCC* N Ce	Il line	Tissue	Histology	Source	Mutation	Zygosity	Gene sequence	Protein sequence
	CRL-5972™	SNU-C1	Colon	Adenocarcinoma	metastasis, peritoneum	n TP53	homozygous	c.497C>A	p.\$166*
	<u>HTB-39™</u>	SK-CO-1	Colon	Adenocarcinoma	metastasis, ascites	APC	heterozygous	c.3266delT	p.F1089fs*37
						KRAS	heterozygous	c.4328delC	p.P1443fs*30
							homozygous	c.35G>T	p.G12V
1, KRAS (ATCC [®] No. TCP-1006 [™])	<u>CCL-233™</u>	SW1116	Colon	Adenocarcinoma	primary	APC	heterozygous	c.4287_4296delAACCATGCCA	p.Q1429fs*41
-10(APC	heterozygous	c.35G)C	p.G12A
1C						KRAS	Homo-		
Ň					Metastasis	TP53	zygous	c.476C>A	p.A159D
Ű	<u>CCL-237™</u> SW948 Colon	SW948 Colon	Colon	Adeno-	lung	APC		c.3340C>T	p.R1114*
LA) 8			carcinoma		APC	heterozygous	c.4285C>T	p.Q1429*	
(RAS		our on on o		KRAS	Hetero-	c.182A>T	p.Q61L		
1, 1						PIK3CA	zygous	c.1624G>A	p.E542K
Panel	<u>CCL-248™</u>	T84	Colon	Carcinoma	Primary	APC	Lygodo	c.4464delA	p.L1488fs*19
erP						KDAC	heterozygous	c.38G>A	p.G13D
anc						APC	heterozygous	c.1624G>A	p.E542K
Colon Cancer						FAM123B	homozygous	c.376-1G>T	p.?
C	<u>CCL-255™</u>	LS123	Rectum	Adenocarcinoma	primary	FBXW7	heterozygous	c.1873C>T	p.Q625*
						KRAS	heterozygous	c.4348C>T	p.R1450*
						TP53	heterozygous	c.34G>A	p.G12S
						SMAD4	homozygous	c.988G>T	p.E330*
						TP53	heterozygous	c.524G>A	p.R175H

ATCC Breast Cancer Cell Panels

	If you are interested in	Supportive materials
	Using large number of cell lines to identify other rare or novel mutations/targets	 Breast Cancer Cell Panel (ATCC[®] 30-4500K[™]) 45 breast cancer cell lines
	Basic or translational research focused on triple negative breast cancer	 Triple-Negative Breast Cancer Cell Panels (ATCC[®] TCP-1001[™], TCP-1002[™], TCP-1003[™])
	Patient therapeutic treatment history or biomarker expression	 Breast Cancer Biomarkers Cell Line Panel 1 (ATCC[®] TCP-1004[™])
	Breast cancer metastasis, <i>in vitro</i> mouse models of breast cancer, or the EGFR-MEK signaling pathways	 Breast Cancer Mouse Model Cell Panel (ATCC[®] TCP- 1005[™])
ATCC	P53 hotspot mutations, or characterization and validation data	Breast Cancer p53 Hotspot Mutation Cell Panel (ATCC [®] TCP-2010 [™])

ATCC Genetic Alteration Cell Panels

- Driver gene focused
- Signaling pathway focused
- Integrative design

PANELS BY MOLECULAR SIGNATURE

Each panel in the molecular signature collection is composed of cell lines that have been sequenced and validated for mutations in specific genes, such as p53. These panels harness the combined forces of genomic data and highly reliable, authenticated ATCC tumor cell lines to provide solid experimental platforms for cancer research and drug discovery.

p53 hotspot mutation panels

THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED"

NON-SMALL CELL LUNG CANCER P53 HOTSPOT MUTATION CELL PANEL

ATCC Genetic Alteration Cell Panels

p53 background

- Tumor suppressor protein encoded by the TP53 gene
- p53 controls the cellular response to stress signals through the induction of cell-cycle arrest, apoptosis, and senescence

ATCC[®] Karen H. Vousden and David P. Lane, Nature Reviews, 2007

p53 mutations in cancer

- 50% of human tumors contain mutations or deletions in the TP53 gene
- A p53 mutation is vitally important in tumor progression

ATCC The TP53 website http://p53.free.fr/index.html

p53 hotspot mutations

 Hotspot mutations in the TP53 gene most frequently occur in the DNA binding domain

P53 hotspot mutations

The design of a p53 hotspot mutation panel

NSCLC Lung cancer p53 hotspot mutation cell line panel						
ATCC No.	Designation	Tissue	Disease	TP53 status	Gene sequence	protein sequence
CRL-9609	BEAS-2B	lung	normal tissue,SV-40 immortalized	WT	-	-
CCL-185	A549	lung	non-small cell lung carcinoma (NSCLC)	WT	-	-
CRL-5803	NCI-H1299	lung	non-small cell lung carcinoma (NSCLC)	NULL	c.(del)	-
HTB-178	NCI-H596	lung	non-small cell lung carcinoma (NSCLC)	MUT	c.733G>T	p.G245C
CRL-5893	Calu-1	lung	non-small cell lung carcinoma (NSCLC)	MUT	c.742C>T	p.R248W
CRL-5908	NCI-H1975	lung	non-small cell lung carcinoma (NSCLC)	MUT	c.818G>A	p.R273H

Disease	TP53	Gene	protein
normal tissue	WT) -	-
NSCLC	WT) -	-
NSCLC	NULL	c.(del)	-
NSCLC	MUT	c.733G>T	p.G245C
NSCLC	MUT	c.742C>T	p.R248W
NSCLC	MUT	c.818G>A	p.R273H

Shorter doubling time in cells with mutant p53

MDA-MB-361, p53 WT

BT549, p53 p.R249S

ATCC[®] TCP-2010[™] Breast Cancer p53 Hotspot Mutation Panel

p53 protein expression in cells with mutated p53

(IF staining: P53, F-actin, Hoechst 33342)

p21 expression in cells with mutant p53

ATCC[®] TCP-2010[™] Breast Cancer p53 Hotspot Mutation Panel

Other available Genetic Alteration Panels

Unique applications for Tumor and Genetic Alteration Cell Panels

- Validation and characterization of potential cancer driver genes
- Functional and molecular profiling of cancer cell lines which are subtypespecific
- Analyzing top genetic alterations across tumor types and their roles in drug sensitivity and resistance
- Testing small molecules or biologics for cancer drug development

Human skin cancer cell dividing

Outline

Tumor and Genetic Alteration Cell Panels

hTERT Immortalized Cell Lines

HEKPlus Protein Expression System

Bypass replicative senescence using telomerase

Regulation of telomere length in normal and cancer cells by telomerase Expert Reviews in Molecular Medicine © 2002 Cambridge University Press

Note: Viral (Large T antigen, HPV-16 E6/E7) and non-viral (Cdk-4 and Bmi-1) onco-protein vectors may also be used to support the hTERT immortalization vector

hTERT-immortalized cells are unique tools

	Primary Cells	hTERT- Immortalized	Onco, Viral- Transformed	Cancer Cell Lines
Mimic <i>in vivo</i> Tissue Phenotype	++++	+++	++	+
Genotypic Stability	Diploid	Diploid / Near-Diploid	Near-Diploid / Aneuploid	Aneuploid
Proliferative Capacity	+	+++	+++	+++
Supply	+	+++	+++	+++
Inter-Experimental Reproducibility	Low	Good	Good	Good
Cost	High	Medium	Low	Low
Ease of Use	+	++	++	+++

hTERT-immortalized cell lines from ATCC

Tissue	Cell Type	ATCC [®] No.	Designations	Comments
Breast	Mammary Epithelial	CRL-4010™	hTERT-HME1	Normal
Bone	Bone Cartilage Fibroblast	CRL-2846™, CRL-2847™	CHON-001, CHON-002	Normal
Esophagus	Barrett's Esophageal Epithelial	CRL-4027 [™] , CRL-4028 [™] , CRL-4029 [™] , CRL-4030 [™]	CP-A, CP-B, CP-C, CP-D	Pre-malignant sample
Еуе	Retinal Pigment Epithelial	CRL-4000™	hTERT-RPE1	Normal
	Angiomyolipoma	CRL-4004™	UMB1949	Angiomyolipoma
Kidney		CRL-4008™	SV7tert PDGF tumor-1	Autocrine transformation and epigenetic changes
	Proximal Tubule Epithelial	CRL-4031™	RPTEC/TERT1	Normal
	Bronchial Epithelial	CRL-4011™	NuLi-1	Normal
Lung		CRL-4013 [™] , CRL-4015 [™] , CRL-4016 [™] , CRL-4017 [™]	CuFi-1, CuFi-4, CuFi-5, CuFi-6	Cystic Fibrosis
	Pancreatic Duct Epithelial	CRL-4023™	hTERT-HPNE	Normal
Pancreas		CRL-4036 [™] , CRL-4037 [™] , CRL-4038 [™] , CRL-4039 [™]	hTERT-HPNE E6/E7, E6/E7/st, E6/E7/K-RasG12D, E6/E7/K-RasG12D/st	Stepwise oncogenic manipulation
Skin	Dermal Microvascular Endothelial	CRL-4025™	TIME	Normal
	Foreskin Fibroblast	CRL-4001™	BJ-5ta	Normal Neonatal
Uterus	Endometrium Fibroblast	CRL-4003™	T HESCs	Normal

ATCC°

TIME-GFP cell line

- hTERT-immortalized microvascular endothelial (TIME)-GFP cell
- Derived by transfecting TIME (ATCC[®] CRL-4025[™]) cells with linearized pWE2-EmGFP plasmid
- Stably expresses the GFP under a CMV promoter
- Diploid cell line of male origin with a chromosome number of 46 (the line shows some karyotypic instability at later passages)
- Positive for CD31(endothelial cell marker)
- Positive for the uptake of Low Density Lipoprotein (LDL)
- Capable of 15 population doublings after recovery from cryopreservation

TIME-GFP in vitro tubule formation assay

• Grown with:

Vascular Cell Basal Medium (ATCC[®] PCS-100-030) supplement with Microvascular Endothelial Cell Growth Kit-BBE (ATCC[®] PCS-110-040) or Microvascular Endothelial Cell Growth Kit-VEGF (ATCC[®] PCS-110-041)

- ATCC°
- Blasticidin and G418 added to support cell modification

Outline

Tumor Cell and Genetic Alteration Panels

hTERT Immortalized Cell Lines

HEKPlus Protein Expression System

HEK*Plus* Protein Expression System (ATCC[®] ACS-4800K)

A complete mammalian protein expression system using serum-free suspension cell cultures of HEK293 cells

Components	ATCC [®] No.		
HEK <i>Plus</i> SF Suspension Cells	ACS-4500™		
HEK <i>Plus</i> SFM Medium	ACS-4002		
HEKPlus Boost Solution	ACS-4003		
GeneXPlus Transfection Reagent	ACS-4004		
L-Alanyl-Glutamine, 200 mM	30-2115		

HEKPlus system: High transfection efficiency

The HEK*Plus* Expression System consistently achieves high transfection efficiency, with 65% to 70% of cells expressing the construct 48 to 72 hours after transfection

HEK*Plus* system versus control

The HEK*Plus* Expression System results in **protein yields higher than the expression systems of an alternate supplier**.

SEAP was assayed using a phosphatase reaction, which suggests that the expressed protein is **functional**.

Scalability of the HEKPlus system

The kit components are offered as a cost-effective complete system or individually to meet the needs of the investigator.
 The kit is scalable. It is tested to ensure a comparable yield of SEAP when either 2 mL or 200 mL of cells (1 x 10⁶ cells/mL) are transfected.

Summary

- Tumor and Genetic Alteration Cell Panels utilize cancer genomics to support drug discovery and the *in vitro* investigation of clinically relevant cancer pathology.
- hTERT immortalized cells exhibit in vitro tissue phenotypes while demonstrating a high proliferative capacity, supporting various longterm studies of biochemical and physical aspects of cell growth.
- HEKPlus transfection system offers an easy-to-use system to express your protein of interest, and may be ideal for the expression and detection of functional human proteins.
- Collectively, these tools can support *in vitro* cancer research, drug discovery, and therapeutic target development.

Thank you!

Register for the next installment in the ATCC "*Excellence in Research*" webinar series on February 27, 2014 at <u>www.atcc.org/webinars</u>.

Dr. Yvonne Reid will discuss the current technologies used to authenticate and characterize animal cell lines.

Thank you for joining today! Please send additional questions to <u>tech@atcc.org</u>

