Best Practices in Cryopreservation

Steven Budd, M.S. *Product Line Business Specialist* Cell Biology Systems, ATCC April 21, 2016

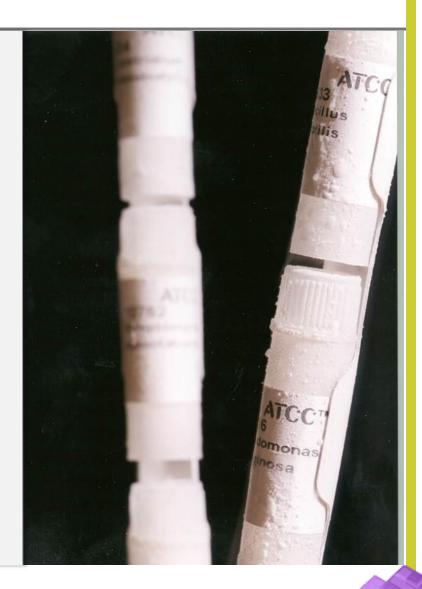
About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- World's premiere biological materials resource and standards development organization
- ATCC collaborates with and supports the scientific community with industry-standard biological products and innovative solutions
- Strong team of 400+ employees; over onethird with advanced degrees

Outline

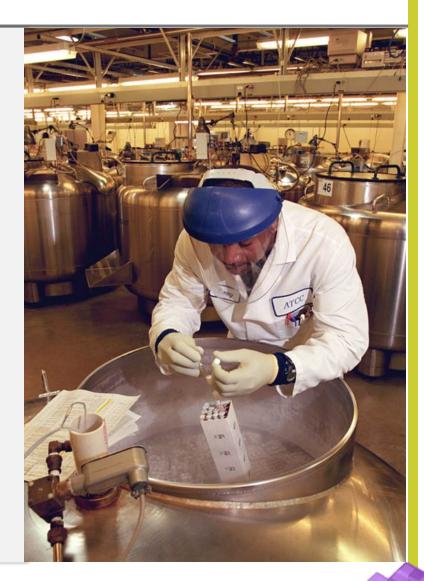
Cryopreservation

- Definition/benefits
- Cryoprotectants
- Procedures
 - Contamination check
 - Media preparation
 - Freezing cells/recovery
 - Post-thawing considerations



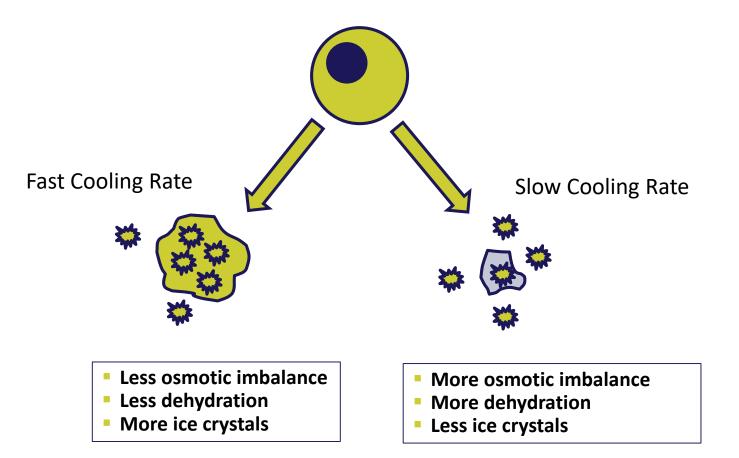
Outline

Inventory management

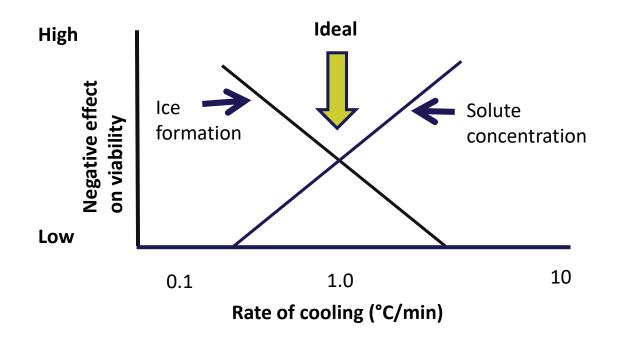

- Seed lot system
- Low temperature storage
- Biological materials management
- Inventory control
- Safety considerations

Cryopreservation defined

- The use of very low temperatures to structurally preserve intact living cells and tissue
- Unprotected freezing is normally lethal to cells while controlled cooling can be used to produce stable conditions that preserve life


Benefits of cryopreservation

- Generation of safety stocks
- Saves time and money
- Preservation of cells
- Insurance against phenotypic drift
- Standard for experiments

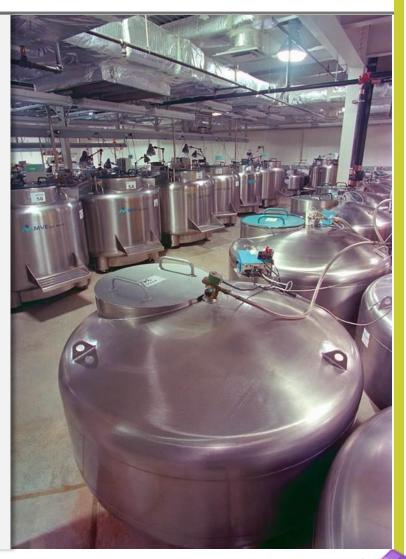

Cryopreservation principles

Cryopreservation principles

- High levels of ice formation and increased solute concentration have a negative impact on cell viability
- Optimal cooling rate for cell viability is 1 to 3°C/min

Cryoprotectants

- Dimethyl sulfoxide (DMSO) and glycerol are the two most widely used cryoprotectants
- Aid in preserving cells
 - Encourage dehydration
 - Minimize solution effects


Cryoprotectants

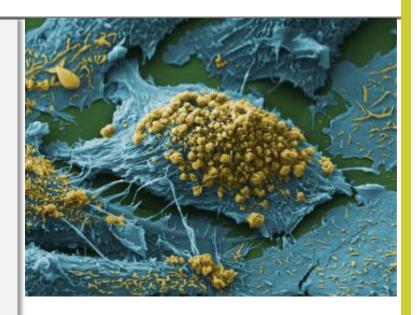
Cell type	Cryoprotectant	Temperature	Number of cells
Animal cells	DMSO (5-10%) or Glycerol (5-10%)	-140°C	10 ⁶ to 10 ⁷ /mL
Bacteria	Glycerol (5-10%)	-80°C	10 ⁷ /mL
Yeast	Glycerol (10%)	-140°C	10 ⁷ /mL
Protozoa	DMSO (5-10%) or Glycerol (10-20%)	-140°C	10 ⁵ to 10 ⁷ /mL
Plant cells	DMSO (5-10%) and Glycerol (5-10%)	-140°C	3% to 20% cell volume
Animal viruses (free)	None	-80°C	NA
Animal viruses (infected cells)	DMSO (7%)	-10°C	10 ⁶ /mL

Cryopreservation procedure

- Check for contamination
- Media preparation
- Freezing cells in a controlled-rate chamber
- Recovering cryopreserved cells
- Post thawing considerations

Contamination

Sources


- Contaminated cell lines
- Improper aseptic technique

Types

- Microbial Bacteria, mycoplasma, fungi, viruses
- Cellular Cross contamination

Signs

- Turbid media
- Rapid decline in pH color change
- Morphological changes
- Filamentous structures

Media preparation

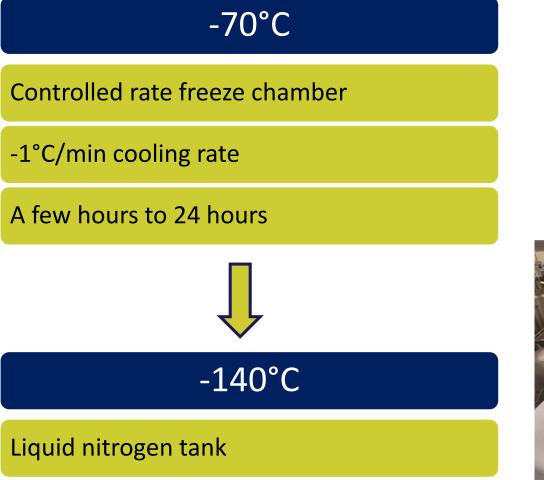
Classical Cell Culture Media

Dulbecco's Modified Eagles Medium (DMEM) and Eagle's Minimum Essential Medium (EMEM)

RPMI-1640 (for suspension cells)

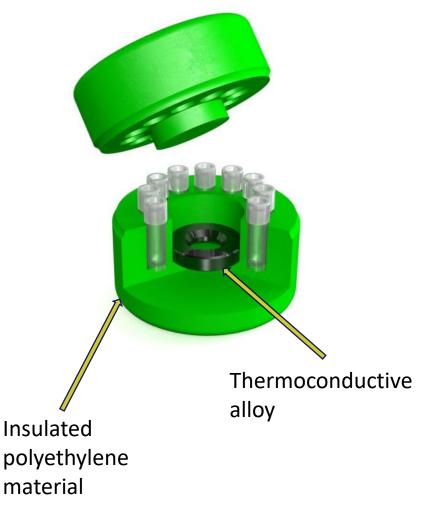
- 5-10% DMSO
- 20% fetal bovine serum (FBS) or bovine serum albumin (BSA)
 - Additional cryprotectant properties
 - Necessary for post-thaw cell survival

ATCC Serum-free Freezing Media (ATCC[®] 30-2600[™])


- All in one media
- 10% DMSO with proteins and additives for cell survival

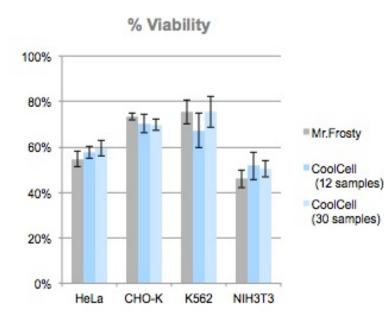
Cell Suspension

- 3 x 10⁶ to 5 x 10⁶ cells/mL
- 1 mL total volume



Controlled rate freezer

- Programmable electronic freezing unit
- Reliable, consistent rate of cooling
- Expensive, maintenance cost



CoolCell[®] (ATCC[®] ACS-6000[™])

- Reliable -1°C/min cooling rate
- 4 Hours in -70°C Freezer
- Comfortable to touch
- No alcohol use or maintenance

Can be used with most cell types

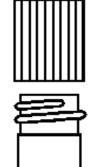
• Verified use with organoids

Performs as well or better than

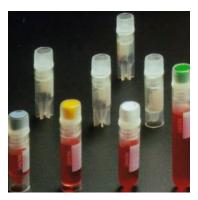
comparable products

H 94% CoolCell Alcohol-based 82% 20 60 80 100 40 % Viable Cell Count PBMC H 92% CoolCell H Alcohol-based 89% 20 80 40 60 100 0 % Viable Cell Count

HUVEC


Vial selection

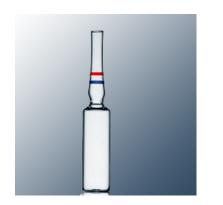
Several types of vials exist for storage at ultra low and cryogenic temperatures


- Plastic vials
 - Internal thread
 - External thread
- Straws
- Glass ampoules (heat sealed)

Considerations for vial type selection

- Storage temperature
- Liquid submersion
- Head space
- Effect on warming
- Material stresses

External



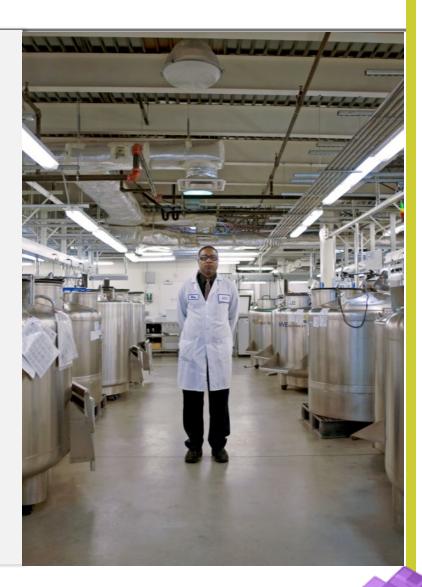
Internal

Post thawing

Thaw as quickly as possible

- Thaw in 37°C water bath for 2 minutes
- Transfer to 10 mL centrifuge tube
- Add 9 mL of growth media (10% FBS)
 - Dropwise to avoid osmotic shock
- Centrifuge, resuspend in 2 mL of growth media

Post thawing considerations


- **Cell recovery measuring viability of cells**
- **Microbial cells**
- Serial dilutions
- Animal/human cells
 - Stain
- Animal embryos
- Morphology
- **Vessel selection**
 - Cell culture dishes
 - Flasks
 - Multiwell plates
 - Roller bottles

Inventory management

- Seed lot system
- Low temperature storage
- Biological materials management
- Inventory control
- Safety considerations

Seed lot system

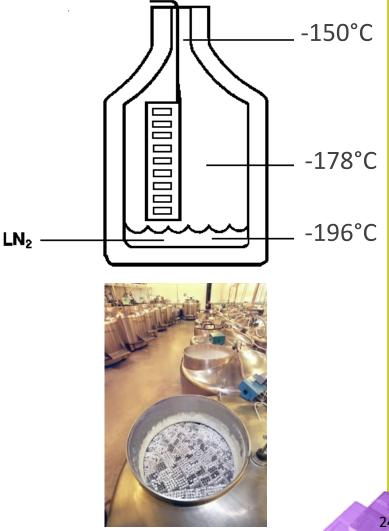
- Preserved cultures remain as close as possible to the original culture
- Seed stock is archived for future replenishment
- Distribution stock are used for distribution
- Authentication compares:
 - Seed, Distribution, Initial culture

22

Low temperature storage

For the best security, always store your cells in liquid nitrogen freezers

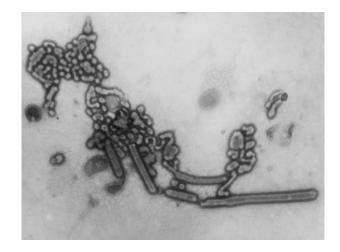
Low temperature storage

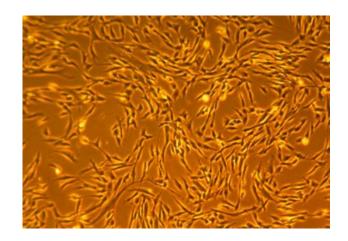

Mammalian cells

Long-term storage should be below -140°C

- -140°C for an indefinite length of time
- -80°C for less than 1 year

Vials should be stored in a liquid nitrogen unit *above* the volume of liquid at the bottom of the tank


This temperature should be between **-140°C** and **-180°C**



Biological materials management

- Ensuring preserved material remains unchanged
- Manageable levels of biological material
- Keeping material that is needed
- Continuing monitoring for contamination
- Removing unwanted, contaminated, misidentified items
- Create a system of identification
 - Complete characterization of new material
 - Cataloging and data recording

Inventory control

Record keeping of vital information

- Preservation methodology used
- Location/identification of stored material
- Preservation date
- Number of passages

Inventory control

Locator codes

- For rapid and easy retrieval
- Freezer unit number
- Code for freezer section or rack
- Box/canister number
- Grid spot within each box

Good inventory control practices minimizes the time needed to find material, reducing the risk that the freezer unit and biological materials will warm

Safety considerations

U.S. Public Health Service Biosafety Guidelines

- Most mammalian cells biosafety level 1
- Human/primate cells biosafety level 2

If not thoroughly characterized

Bacteria / Viruses – biosafety level 3

Personal protective equipment

- Insulated gloves when using liquid nitrogen tanks
- Long sleeve laboratory coats
- Full face mask
 - Possible ampoule explosion

Hazardous biological materials

- Thaw and open vials of hazardous material inside biological safety cabinet
- Decontaminate liquid nitrogen freezer

Summary

Freezing cells	 -1°C/min is ideal for most cells 10% DMSO, 20% FBS, or 20% BSA – mammalian cells 10% glycerol - bacteria Use a controlled rate freezing container, i.e. CoolCell[®] 	
Cell recovery	 Thaw quickly in a 37°C water bath Bring cells out of DMSO slowly Measure the viability of cells 	
Inventory management	material; discard unwanted material	

Thank you for joining today!

Register for more ATCC *"Excellence in Research"* webinars, or watch recorded webinars, at <u>www.atcc.org/webinars</u>.

April 28, 2016

 10:00 AM, 3:00 PM EST
 Frank Simione, M.S., Director, Standards
 Standards Resource Organization, ATCC
 The ATCC Story: A Ninety Year Celebration

May 5, 2016 10:00 AM, 3:00 PM EST Cara Wilder, Ph.D., *Technical Writer*, ATCC Carbapenem-resistant Enterobacteriaceae (CRE) – A Growing Superbug Population

Please email additional questions to: tech@atcc.org

