Cell Culture 101 - Tips for Successful Cell Culture

Steven Budd, M.S., M.B.A. Product Line Business Specialist, ATCC

Kevin Grady, B.S. Product Line Business Manager, ATCC

About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- World's premiere biological materials resource and standards development organization
- ATCC collaborates with and supports the scientific community with industry-standard biological products and innovative solutions
- Strong team of 400+ employees; over one third with advanced degrees

Agenda

- Cell culture workflow what cells to use
- Cell handling/media handling
- Transfection and analysis issues
- Viability assays
- Summary

HEK-293 (ATCC[®] CRL-1573[™])

Primary cells versus continuous cells

- Easy to generate large quantities of cells
- Inexpensive to maintain

4

hTERT-immortalized primary cells

Regulation of telomere length in normal and cancer cells by telomerase Expert Reviews in Molecular Medicine © 2002 Cambridge University Press Bypass replicative senescence by telomerase

 Maintain primary cell function with the lifecycle of a continuous cell line

Potential workflow situations: Standardization and validation

- Use cell lines for standardization and confirmation of each experiment
 - Large number of cells needed
 - Samples with limited variability
 - Generally easy to manipulate

Use primary cells after standardization to further validate the results

- Donor variability
- Biological relevance

Potential workflow situations: High-throughput screening

Screening work flow

- Initial screening in cell lines
 - Large number of cells needed
 - Samples with limited variability
- Next level in hTERT-immortalized primary cell lines
 - Large number of cells needed
 - Samples with limited variability
 - More physiologically relevant results
- Final screen in primary cells (Results with the most biological relevance)

Primary cells as a control

Continuous cell lines are cells isolated from primary tissue (often a tumor) that have mutated to survive a "crisis"

Continuous cell lines have deviated from original source

In every continuous cell line experiment, primary cells should be used as one of the controls

Primary neonatal keratinocytes (ATCC[®] PCS-201-010[™]) differentiated into physiological epidermis

Agenda

- Cell culture workflow what cells to use
- Cell handling/media handling
- Transfection and analysis issues
- Viability assays
- Summary

HEK-293 (ATCC[®] CRL-1573[™])

Thawing cells

- Thaw in 37°C water bath for approximately 2 minutes with gentle agitation
- Spray vial with 70% ethanol
- Transfer to 10 mL centrifuge tube with 9 mL of appropriate growth media (10% FBS)
- *Centrifuge, resuspend in 2 mL of growth media
- Transfer to cell culture vessel

When bringing out of liquid nitrogen, thaw as quickly as possible

*For certain primary cells, centrifugation may be detrimental, refer to specific protocol

Cell expansion

- After thawing, cells should be plated in an appropriate cell culture vessel with complete media
- 24 hours after seeding, check for confluency
- Note, primary cells may take up to several days to reach 80% confluency for subculturing

Cell expansion

still in the exponential phase.

Trypsinization

At 80% confluency (primary cells), cells can be passed using Trypsin-EDTA

- Using warm trypsin-EDTA for about 3-5 minutes, cells will detach with gentle agitation
- Trypsin-EDTA for Primary Cells (ATCC[®] PCS-999-003[™]) is a low concentration formula (.05% Trypsin and .002% EDTA) – necessary for primary cell survival
- A Trypsin Soybean Neutralizing Solution (ATCC[®] 30-2104[™]) is also needed to prevent cell damage

Cryopreservation

 High levels of ice formation and increased solute concentration have a negative impact on cell viability

Optimal cooling rate for cell viability is 1 to 3°C/min

Freezing down cells

Low temperature storage

For the best security, always store your cells in liquid nitrogen freezers

Mammalian cells

Long-term storage should be below -140°C

Vials should be stored in a liquid nitrogen unit *above* the volume of liquid at the bottom of the L tank

This temperature should be between **-140°C** and **-180°C**

Cell characterization

Characterizing cells

- Cell count before plating
 - Calculating % viability

Fibroblasts

Morphology

- Make sure the morphology is consistent with cell type
- Doubling time
 - Contamination from other cell types can affect growth rate

Contamination

Sources

- Contaminated cell lines
- Improper aseptic technique

Types

- Microbial bacteria, mycoplasma, fungi, viruses
- Cellular cross contamination

Signs

- Turbid media
- Rapid decline in pH color change
- Morphological changes
- Filamentous structures

E. coli, image courtesy of David Gregory and Debbie Marshall

Mycoplasma contamination

Not easily detected

- Does not cause media turbidity
- Does not alter the pH of the media
- Few metabolic byproducts
- Cannot be detected by microscopy
 Results in a number of deleterious effects
- Chromosomal aberrations
- Disruption of nucleic acid synthesis
- Changes in membrane antigenicity
- Inhibition of cell proliferation and metabolism
- Decreased transfection rates
- Changes in gene expression profiles
- Affects virus production
- Cell death

Contamination

Cross Contamination

Leads to the replacement of the original cell line with the contaminant

Causes

- Multiple cell lines under the hood at the same time
- Failure to change out pipettes
- Receiving cell lines from other labs

20% of scientific publications include misidentified cultures

50% of preclinical research is not reproducible

Cell characterization

Universal Mycoplasma Detection Kit

- PCR-based kit (ATCC[®] 30-1012K[™])
- Detects any of the 60 most common mycoplasmas

ATCC STR Profiling

- Ensures your cells are what you think they are
 - STR profile of your cell line
 - Comparison of your cells against ATCC STR Profile database at www.atcc.org/str
 - Electropherograms supporting the allele calls at each locus
 - Comprehensive interpretation of results

Contamination

Personnel and equipment

- Poor culturing practices
- Dust and aerosol

Contamination

- Aerosol dispersion of contaminated cell cultures
- Faulty laminar flow
- **Culture reagents**
 - Sera
 - Media
 - Reagents

Contamination prevention and aseptic technique

Good aseptic technique

- Make it difficult for microorganisms to invade culture vessels
 - Sealed cultured vessels
 - Vented cap flasks
- Disposable aspirators
 - Cell culture hoods with good laminar flow
 - Do not use as a storage area!
- Spray media bottles/reagents with alcohol

Contamination prevention and aseptic technique

- Use small volumes of reagents at a time
- Aliquot stock solutions and reagents
- Always wear clean lab coats and protective clothing
- Use seed stocks
- Create master stocks
- Avoid using antibiotics in media!
 - Can contribute to chronic contamination
 - Rarely prevents contamination
 - Toxic to cells

Media choices

Animal cell lines – media + 10% FBS

- Eagle's Minimum Essential Medium (EMEM; ATCC[®] 30-2003[™])
- Dulbecco's Modified Eagle's Medium (DMEM; ATCC[®] 30-2002[™])
- Iscove's Modified Dulbecco's Medium (IMDM; ATCC[®] 30-2005[™])
- Kaighn's Modification of Ham's F-12 Medium (ATCC[®] 30-2004[™])
- DMEM/ F12 Medium (ATCC[®] 30-2006[™])
- McCoy's 5A (ATCC[®] 30-2007[™])
- RPMI-1640 (ATCC[®] 30-2001[™])
- Leibovitz's L-15 (ATCC[®] 30-2008™)

Primary Cells – Primary Cell Basal Media and Growth Kits

 Primary cells require their own specially formulated media, specific to each cell type

Media choices

Media ingredients/additives

- Nonessential amino acids
 - Can be added to reduce the metabolic burden on cells
- L-glutamine
 - Present in ATCC Classical Cell Culture Media
 - Relatively stable in bottles kept at 4-8°C
 - Glutamine degradation increases ammonia toxicity
 - Generally not recommended to "spike" media with L-glutamine
- Antibiotics and antimycotics
 - Penicillin-streptomycin, gentamicin sulfate
 - Amphothericin B
 - Generally not recommended

Aspergillus fumigatus, image courtesy of David Gregory and Debbie Marshall

Media choices

Special notes:

- Maintain cells in the same media
- Vendor to vendor media variability
 - Possible osmotic shock
- When transferring to new media:
 - Use 1:1 mix (50% old, 50% new media)
 - 1:2 mix
 - 1:3 mix
 - 1:7 mix

Heat inactivation of FBS? Not recommended

Agenda

- Cell culture workflow what cells to use
- Cell handling/media handling
- Transfection and analysis issues
- Viability assays
- Summary

HEK-293 (ATCC[®] CRL-1573[™])

Introduction to transfection

Method for introducing exogenous nucleic acid sequences into mammalian cells

Widely used technique that has made expressing DNA or RNA in most types of cells relatively easy

A variety of approaches have been developed for use across a range of applications

No single approach will work for all conditions/cell types/application

Transfection methods

Lipid	 Easy, most common method Variable efficiencies Will not work with all cell types
Viral	 Will transfect non-dividing cells Technically challenging, expensive Safety issues, immune response, mutagenesis
Electroporation	 Requires specialized equipment Cells must be in suspension Toxicity can be an issue
Physical	 Technically challenging, expensive Requires specialized equipment Works with non-nucleic acids; single cell transfection
Other	 Not common, may be technically challenging Non-lipid based chemicals Nanoparticles/laser/ultrasound/magnetic

Mechanism of lipid-based transfection

ATCC transfection reagents: ■ GeneX*Plus* (ATCC[®] ACS-4004[™]) ■ TransfeX[™] (ATCC[®] ACS-4005[™])

Typical transfection workflow

Day -1

Collect and seed cells into vessel where transfection will be performed

Day 0

Form transfection complexes by combining nucleic acid sequences and transfection reagent

Add transfection complexes to cells

Days 1+

33

Overexpression vs. knockdown

Introduce foreign plasmid DNA/mRNA to induce expression of a desired transcript/protein

Utilize RNAi pathway to degrade or inhibit translation of mRNA transcripts and subsequently reduce the amount of protein

Transient versus stable transfection

Transient

- Foreign gene not integrated into genome
- Expression persists for limited time
- Foreign gene lost due to cell division, degradation, or other factors

Stable

- Initially a transient transfection
- Use co-expressed selection markers
- Long term, only cells that have integrated the foreign gene persist

Transfection: Best practices

ATCC

Cell culture conditions

Nucleic acids

ATCC hTERT Immortalized Cell Culture Guide, 2014.

Experimental design and execution

Transfection protocol	 Use master mixes Distribute complexes evenly Store DNA/RNA properly
Proper controls	Positive and negative controlsTransfected and un-transfected controls
Monitor toxicity/ off-target effects	 Morphological changes Presence of vacuoles Changes in proliferation
Validate results	 Multiple assays For siRNA: test multiple sequences For miRNA: increase & suppress

Assay methods

Assay timing

Time post-transfection

Transfection reagents

Volume per reaction

Incubation time

Best practices summary

Agenda

- Cell culture workflow what cells to use
- Cell handling/media handling
- Transfection and analysis issues
- Viability assays
- Summary

HEK-293 (ATCC[®] CRL-1573[™])

Quantitative evaluation of cell proliferation rate and response to external factors that affect cell viability

- Commonly used for cytoxicity, high-throughput screening (e.g., drug development)
- Uses tetrazolium salts in a colorimetric method for evaluating cell populations

MTT Cell Proliferation Assay (ATCC[®] 30-1010K[™])

 Tetrazolium MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5diphenyltetrazolium bromide)

XTT Cell Proliferation Assay (ATCC[®] 30- 1011K[™])

 Tetrazolium XTT (sodium 2,3,-bis(2-methoxy-4-nitro-5sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium

MTT Reaction

MTT salt is **reduced** within cellular matrix to Formazan, lysed with detergent to solubilize crystals

Media turns **PURPLE**

XTT Reaction

XTT salt is **reduced** at cell membrane with PMS agent

Media turns **ORANGE**

Agenda

- Cell culture workflow what cells to use
- Cell handling/media handling
- Transfection and analysis issues
- Viability assays
- Summary

HEK-293 (ATCC[®] CRL-1573[™])

Disclaimers

© American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise.

Thank you for joining today!

Register for more ATCC webinars at <u>www.atcc.org/webinars</u>

Learn more about transfection at <u>www.atcc.org/transfection</u>

For more information about cell health visit <u>www.atcc.org/cellhealth</u>

Please email additional questions to: tech@atcc.org

