

Novel Epithelial-to-Mesenchymal Transition Reporter Cell Lines Created by CRISPR Technology

> Weiguo Shu, Ph.D. Senior Scientist, ATCC

Credible Leads to Incredible™

About ATCC

- Founded in 1925, ATCC is a non-profit organization with HQ in Manassas, VA, and an R&D and Services center in Gaithersburg, MD
- World's premier biological materials resource and standards development organization
 - 5,000 cell lines
 - 80,000 microorganisms
 - Genomic & synthetic nucleic acids
 - Media/reagents
- ATCC collaborates with and supports the scientific community with industry-standard biological products and innovative solutions
- Growing portfolio of products and services
- Sales and distribution in 150 countries, 15 international distributors
- Talented team of 450+ employees, over one-third with advanced degrees

- EMT background
- Current EMT reporter cell lines
- Generation and validation of CRC HCT-116 VIM-RFP (ATCC[®] CCL-247EMT[™]) reporter line
- Generation and validation of NSCLC A549 VIM-RFP (ATCC[®] CCL-185EMT[™]) reporter line

Summary

Epithelial-to-mesenchymal transition (EMT) keepithelial-to-mesenchymal transition (EMT) keepithelia **characteristics**

Reversible biological process; allows for the transdifferentiation of epithelial cells

Adoption of the phenotype of mesenchymal cells

Cancer epithelial cells undergoing EMT:

Display an array of dynamic states "partial EMT"

EMT is involved in pathological processes

- Metastasis
- Chemo-resistance

EMT is a clinically relevant target for the treatment of cancer and overcoming drug resistance

- Regular columnar morphology
- High degree of cell adhesion
- Cell relatively static

Mesenchymal features

- Irregular rounded or elongate morphology
- Loss of apico-basal polarity
- Cells highly motile

- Signaling pathways/growth factors: TGFβ
- EMT transcription factors: Twist, Snail1/2, Zeb1/2
- Non-coding micro-RNAs: miR-200
- Epigenetic modifiers: Histone demethylase PHF2

Zhang J, et al. Sci Signal 7(345):ra91. doi: 10.1126/scisignal.2005304, 2014

Strategies for screening compounds targeting EMT

ATCC

- EMT background
- Current EMT reporter cell lines
- Generation and validation of CRC HCT-116 VIM-RFP (ATCC[®] CCL-243EMT[™]) reporter line
- Generation and validation of NSCLC A549 VIM-RFP (ATCC[®] CCL-185EMT[™]) reporter line

Summary

Cell/Cell Line	Phenotype	Cancer/Tissue	Mechanisms	Readout	References
HMLER ^{shEcad}	Mesenchyme (induced)	Breast (immortalized cells)	Cytotoxicity	Viability	Gupta PB, <i>et al</i> . Cell, 138(4): 645– 659, 2009.
NBT-II	Mesenchyme (induced)	Bladder cancer	Inhibiting EMT	Migration	Chua KN, <i>et al</i> . PLoS ONE, 7(3): e33183, 2012.
PANC-1	Mesenchyme	Pancreatic cancer	Promoting MET	ECAD expression	Polireddy K, <i>et al</i> . PLoS ONE 11(10): e0164811, 2016.
MDA-MB-231	Mesenchyme	Breast cancer	Promoting MET	VIM-LUC	Li Q, <i>et al.</i> J Biomol Screen 16(2): 141-54, 2011.
HMLE(N8)	Mesenchyme	Breast (immortalized cells)	Promoting MET	ECAD-LUC	Pattabiraman DR, <i>et al.</i> Science 351 (6277: aad3680, 2016.
SKOV3	Mesenchyme (partial)	Ovarian cancer	Promoting MET	ECAD-LUC	Tang HM, <i>et al</i> . Cell Death Discov 13(2): 16041, 2016.

Generation of targeted knock-in by CRISPR technology

ATCC°

- EMT background
- Current EMT reporter cell lines
- Generation and validation of CRC HCT-116 VIM-RFP (ATCC[®] CCL-243EMT[™]) reporter line
- Generation and validation of NSCLC A549 VIM-RFP (ATCC[®] CCL-185EMT[™]) reporter line

Summary

Colon cancer HCT-116 cells can be induced to undergo EMT

Precision editing to create vimentin (VIM)-RFP knock-in allele

Detection of VIM-RFP fusion protein in VIM-RFP cells

Morphology of HCT-116 VIM-RFP is similar to the parental line

ATCC°

Growth kinetics of HCT-116 VIM-RFP are similar to WT HCT-116

• WT HCT-116 • VIM-RFP HCT-116

WT HCT-116 cells average population doubling time: 20.51 hours

HCT-116 VIM-RFP cells average population doubling time: 22.96 hours

ATCC°

miR-200 inhibitors induce VIM-RFP expression in HCT-116 VIM-RFP

16

High-content imaging quantification of VIM-RFP expression

High content quantification

~ 8.0 fold increase (21 days induction)

miR-200 inhibitors induce VIM-RFP cells to undergo EMT

~ 19.8 fold decrease (95% decrease)

(Student's t-test, ***p<0.001, ****p<0.0001)

21 days induction

Demethylating agent azacitidine induces VIM-RFP expression

- EMT background
- Current EMT reporter cell lines
- Generation and validation of CRC HCT-116 VIM-RFP (ATCC[®] CCL-243EMT[™]) reporter line
- Generation and validation of NSCLC A549 VIM-RFP (ATCC[®] CCL-185EMT[™]) reporter line

Summary

TGF-ß treatment induces morphological changes in A549 VIM-RFP

Low density

High density

VIM-RFP expression is increased upon TGF-B EMT induction

- TGF-β

VIM-RFP, Nuclei

VIM-RFP, Nuclei

E-cadherin expression is decreased upon TGF-ß induction

- TGF-β

E-cadherin, Nuclei

E-cadherin, Nuclei

TGF-β Induced A549 VIM-RFP Cells Display Increased Invasiveness

+ TGF-β

- TGF-β

24

Small molecule EMT inhibitors block transition in A549 VIM-RFP

- EMT background
- Current EMT reporter cell lines
- Generation and validation of CRC HCT-116 VIM-RFP (ATCC[®] CCL-243EMT[™]) reporter line
- Generation and validation of NSCLC A549 VIM-RFP (ATCC[®] CCL-185EMT[™]) reporter line

Summary

- We have successfully generated VIM-RFP fusion EMT reporter cell lines via CRISPR/Cas9 gene-editing technology.
- VIM-RFP reporter cells undergo EMT upon induction, enabling real-time monitoring of EMT intermediate states in live cells.

 VIM-RFP EMT reporter cell lines are suitable and sensitive models for studying the molecular mechanisms underlying EMT and for development of novel anticancer drugs that target EMT.

© American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise.

For more information

- Website: www.atcc.org/EMT
- Flyer: Epithelial-mesenchymal Transition Reporter Cell Line
- Email: <u>wshu@atcc.org</u>

Thank you!

