

Impact of Tick-borne Diseases on Human Health in the United States with a Special Emphasis on Babesiosis

Robert Molestina, PhD Senior Scientist Protistology Laboratory

Credible Leads to Incredible™

ATCC - Credible leads to incredible

- ATCC has provided credible biomaterials for over 90 years
- We continue to cultivate collaboration
 - Among scientists across disciplines
 - Essential for accelerating innovative research
 - Leading to incredible, high-impact results
- Our Cultivating Collaboration pledge: We bring scientists together to discuss
 - Breakthroughs in the state of science
 - Multidisciplinary approaches to key areas of research
 - Breaking the silos that impede research
- Our partnership with you, the scientific community, allows us all to reach the incredible

- Overview of tick-borne diseases
- Needs and gaps in tick-borne disease research
- ATCC resources for tick-borne disease research and diagnostics
- Tick-borne disease research projects at ATCC: A focus on babesiosis

Overview of tick-borne diseases

- Needs and gaps in tick-borne disease research
- ATCC resources for tick-borne disease research and diagnostics
- Tick-borne disease research projects at ATCC: A focus on babesiosis

Tick-borne diseases (TBDs) in the United States

- TBDs are an emerging public health epidemic in the United States.
- TBDs can be bacterial, parasitic, or viral.
- Infections may occur with more than one tick-borne pathogen at a time.
- The CDC currently recognizes 13 unique human tickborne illnesses caused by 18 different pathogens in the United States.

Giemsa stained red blood cells infected with *Babesia microti*.

Bacterial

- Anaplasmosis*
- Borrelia miyamotoi Disease
- Ehrlichiosis*
- Lyme Disease*
- Rocky Mountain Spotted Fever*
- Rickettsia parkeri Rickettsiosis
- Tick-borne Relapsing Fever
- Tularemia*

Parasitic

Babesiosis*

Viral

- Bourbon Virus Disease
- Colorado Tick Fever
- Heartland Virus Disease
- Powassan Virus Disease*

* Nationally notifiable to the National Notifiable Diseases Surveillance System

Total Reported Cases of Tick-borne Disease, 2004–2017

Reported Tick-borne Diseases (2016-2017)

Tick-borne Disease	2016	2017
Lyme Disease ¹ (confirmed and probable)	36,429	42,743
Anaplasmosis/ Ehrlichiosis	5,750	7,718
Spotted Fever Rickettsiosis	4,269	6,248
Babesiosis	1,910	2,368
Tularemia	230	239
Powassan virus	22	33
Total	48,610	59,349

¹Estimated annual cases ~300,000

Geographic distribution of TBDs

* Transmitted by the Blacklegged tick *Ixodes scapularis*

Distribution of Blacklegged Tick *Ixodes scapularis*

Pathogens transmitted by I. scapularis:

- Borrelia burgdorferi and B. mayonii (Lyme disease)
- Anaplasma phagocytophilum (Anaplasmosis)
- *B. miyamotoi* (Relapsing Fever)
- Ehrlichia muris (Ehrlichiosis)
- Babesia microti (Babesiosis)
- Powassan virus

Overview of tick-borne diseases

- Needs and gaps in tick-borne disease research
- ATCC resources for tick-borne disease research and diagnostics
- Tick-borne disease research projects at ATCC: A focus on babesiosis

Current needs and gaps in TBD research

Information and opinions in this report do not necessarily reflect the opinions of each member of the Working Group the U.S. Department of Health and Human Services, or any other component of the Federal Government

- The 21st Century Cures Act was passed by Congress in 2016 to promote new health care innovations.
- Part of the legislation pertained to advancing research on TBDs.
- The Act required the U.S. Department of Health and Human Services (HHS) to establish a Federal Advisory Committee.
- The HHS formed the Tick-Borne Disease Working Group.

- Improve early and accurate diagnosis and treatment.
- Strengthen national surveillance.
- Understand the immunological mechanisms (*i.e.*, pathogen-host interactions) of immune protection for Lyme disease and other TBDs.
- Develop new rapid and accurate lab tests.
- Develop antibiotic combinations and/or therapeutic options for treating acute and persistent illness.
- Encourage the development of strategic plans for TBD federal investments.
- Characterize how TBD affects U.S. national security, military readiness, and the health and wellness of active duty Service members, Veterans, and their families.

- Overview of tick-borne diseases
 Needs and gaps in tick-borne disease research
- ATCC resources for tick-borne disease research and diagnostics
- Tick-borne disease research projects at ATCC: A focus on babesiosis

ATCC resources that support TBD research

Needs and Gaps in TBD Research¹

Improve early and accurate diagnosis and treatment.

Understand the immunological mechanisms of immune protection for Lyme disease and other TBD.

Develop new rapid and accurate lab tests.

Develop antibiotic combinations and/or therapeutic options for treating acute and persistent illness.

ATCC resources that support TBD research

Where to find ATCC TBD research resources

- Overview of tick-borne diseases
- Needs and gaps in tick-borne disease research
- ATCC resources for tick-borne disease research and diagnostics
- Tick-borne disease research projects at ATCC: A focus on babesiosis

- Emerging TBD in the U.S.
- Caused by RBC-infecting Babesia microti
- Transmitted via *Ixodes* ticks, pregnancy, transfusion (less common)
- High prevalence in Northeast and Upper Midwest
- Infections usually asymptomatic or mild among healthy
- Severe infections in immunocompromised
- Worsening of Lyme disease symptoms in co-infections
- <u>New specific and sensitive lab tests for</u> <u>diagnosis and blood screening are needed</u>

- Development of Quantitative PCR Assays for Babesia
 - Wilson M, *et al.* Development of droplet digital PCR for the detection of *Babesia microti* and *Babesia duncani*. *Exp Parasitol* 149: 24-31, 2015.
- Proteomics of Babesia microti infection*
 - Magni RL, *et al.* Analysis of the *Babesia microti* proteome in infected red blood cells by a combination of nanotechnology and mass spectrometry. *Int J Parasitol* 49: 139-144, 2019.
 - * In collaboration with The Center for Applied Proteomics and Molecular Medicine at George Mason University

Development of Quantitative PCR Assays for Babesia

- Wilson M, *et al.* Development of droplet digital PCR for the detection of *Babesia microti* and *Babesia duncani*. *Exp Parasitol* 149: 24-31, 2015.

Proteomics of Babesia microti infection

 Magni RL, et al. Analysis of the Babesia microti proteome in infected red blood cells by a combination of nanotechnology and mass spectrometry. Int J Parasitol 49: 139-144, 2019.

> In collaboration with The Center for Applied Proteomics and Molecular Medicine at George Mason University

Development of quantitative PCR assays for Babesia

- The current gold standard for detection of *Babesia microti* infections is microscopic examination of blood smears.
- Antibody detection by serology can provide supportive evidence for diagnosis but does not reliably distinguish between active and prior infection.
- Recent PCR-based assays, including real-time PCR, have been developed for *Babesia microti*.
- Molecular assays that detect and distinguish between *B.* microti and other agents of human babesiosis (*i.e.*, *B.* duncani) are lacking.
- These closely related species can be differentiated due to sequence variation within the internal transcribed spacer (ITS) regions of nuclear ribosomal RNAs.

Giemsa stained red blood cells containing both *B microti* and *P berghei*.

Targeting Babesia ITS regions for quantitative PCR assays

Development of real time PCR assays for Babesia

Real-time PCR detection and quantitation of Babesia							
DNA standards							
B. microti		Cq B. duncani		Cq			
standard ^a	Mean	SD	standard ^a	Mean	SD		
1 × 10 ⁸	12.85	0.155	1 × 10 ⁸	10.90	0.194		
1 × 10 ⁷	16.36	0.059	1 × 10 ⁷	14.15	0.257		
1 × 10 ⁶	19.82	0.075	1 × 10 ⁶	17.39	0.058		
1 × 10 ⁵	23.44	0.042	1 × 10 ⁵	21.06	0.202		
1 × 10 ⁴	27.03	0.049	1 × 10 ⁴	24.78	0.112		
1 × 10 ³	30.54	0.184	1 × 10 ³	28.53	0.414		
100	34.24	0.529	100	31.71	0.127		
10	37.60	0.408	10	34.13	1.057		
1	0.0	0.0	1	0.0	0.0		
H ₂ O	0.0	0.0	H ₂ O	0.0	0.0		

ma DCD data ation and supertitation a

^a Values reflect copy numbers per reaction based on serial dilutions of plasmid DNA standard by DNA concentration and known molecular mass. Data represent the means \pm standard deviations of each dilution tested in triplicate from a representative experiment of three performed.

Development of real time PCR assays for Babesia

Real-time PCR detection and quantitation of Babesia								
	DNA standards							
B. microti		Cq	B. duncani	Cq				
standard ^a	Mean	SD	standard ^a	Mean	SD			
1 × 10 ⁸	12.85	0.155	1 × 10 ⁸	10.90	0.194			
1 × 10 ⁷	16.36	0.059	1 × 10 ⁷	14.15	0.257			
1 × 10 ⁶	19.82	0.075	1 × 10 ⁶	17.39	0.058			
1 × 10 ⁵	23.44	0.042	1 × 10 ⁵	21.06	0.202			
1 × 10 ⁴	27.03	0.049	1 × 10 ⁴	24.78	0.112			
1 × 10 ³	30.54	0.184	1 × 10 ³	28.53	0.414			
100	34.24	0.529	100	31.71	0.127			
10	37.60	0.408	10	34.13	1.057			
1	0.0	0.0	1	0.0	0.0			
H ₂ O	0.0	0.0	H ₂ O	0.0	0.0			

^a Values reflect copy numbers per reaction based on serial dilutions of plasmid DNA standard by DNA concentration and known molecular mass. Data represent the means \pm standard deviations of each dilution tested in triplicate from a representative experiment of three performed.

Development of droplet digital[™] PCR assays for Babesia

DNA sta <u>ndards</u>							
B. microti	ddPCR value ^b		B. duncani	ddPCR value ^b			
standard ^a	Mean	SD	standard ^a	Mean	SD		
1 × 10 ⁵	38,200	721	1 × 10 ⁵	51,733	1,858		
1 × 10 ⁴	3,393	170	1 × 10 ⁴	4,827	50		
1 × 10 ³	344	26.5	1 × 10 ³	414	31.4		
100	38.5	3.8	100	44.3	3.4		
10	1.2	0	10	7.5	1.1		
1	0	0	1	0	0		
H ₂ O	0	0	H ₂ O	0	0		

ddPCR[™] detection and quantitation of *Babesia*

^aValues reflect copy numbers added per reaction based on serial dilutions of plasmid DNA standard by DNA concentration and known molecular mass. ^bCopies per reaction detected. Data represent the means ± standard deviations of each dilution tested as five replicates from a representative experiment of three performed.

Wilson M, et al. Exp. Parasitol. 149: 24-31, 2015. ATCC

Development of droplet digital[™] PCR assays for Babesia

DNA standards						
B. microti	ddPCR value ^b		B. duncani	ddPCR value ^b		
standard ^a	Mean	SD	standard ^a	Mean	SD	
1 × 10 ⁵	38,200	721	1 × 10 ⁵	51,733	1,858	
1 × 10 ⁴	3,393	170	1 × 10 ⁴	4,827	50	
1 × 10 ³	344	26.5	1 × 10 ³	414	31.4	
100	38.5	3.8	100	44.3	3.4	
10	1.2	0	10	7.5	1.1	
1	0	0	1	0	0	
H ₂ O	0	0	H ₂ O	0	0	

ddPCR[™] detection and quantitation of *Babesia*

^aValues reflect copy numbers added per reaction based on serial dilutions of plasmid DNA standard by DNA concentration and known molecular mass. ^bCopies per reaction detected. Data represent the means ± standard deviations of each dilution tested as five replicates from a representative experiment of three performed.

Detection of Babesia DNA in hamster blood by qPCR

Summary of qPCR assays for Babesia

- We report the development of RT-PCR and ddPCR[™] assays for the detection and discrimination of *B. microti* and *B. duncani* in blood samples.
- Pending further validation, the assays could be used as highly specific and sensitive molecular tests for screening human blood samples.
- Wilson M, et al. Development of droplet digital PCR for the detection of Babesia microti and Babesia duncani. Exp Parasitol, 149: 24-31, 2015.
- Quantitated DNA products for use as standards in *Babesia* qPCR assays are available in the ATCC catalog (ATCC[®] PRA-398DQ[™] and ATCC[®] PRA-302DQ[™])

Giemsa stained red blood cells infected with *Babesia microti*.

- Development of Quantitative PCR Assays for Babesia
 - Wilson M, et al. Development of droplet digital PCR for the detection of Babesia microti and Babesia duncani. Exp Parasitol 149: 24-31, 2015.
- Proteomics of Babesia microti infection*
 - Magni RL, et al. Analysis of the *Babesia microti* proteome in infected red blood cells by a combination of nanotechnology and mass spectrometry. Int J Parasitol 49: 139-144, 2019.
 - * In collaboration with The Center for Applied Proteomics and Molecular Medicine at George Mason University

Proteomics of Babesia microti infection

- Proteomics research on *Babesia* lags behind other Apicomplexans.
- In vitro culture techniques used for Plasmodium and Toxoplasma are not readily available for B. microti.
- Proteomic analysis of *B. microti* is currently restricted to animal models.
- Benefits of analyzing blood and other body fluids include:
 - Discovery of new biomarkers of infection
 - Correlation of the progression of infection with the detection of specific biomarkers

Major challenges in biomarker discovery by proteomics

- Detection of biomarkers during early stages of disease is difficult due to their low abundance in blood and other body fluids.
- There is an overwhelming abundance of host resident proteins such as albumin and immunoglobulins in plasma (~90% of circulating proteins), which masks the isolation of rare biomarkers.
- There is a possibility for biomarkers to become rapidly degraded by proteases immediately after collection of the biological sample.

Giemsa stained red blood cells infected with *Babesia microti*.

Application of nanoparticle capture in proteomics

- Hydrogel nanospheres concentrate and preserve small molecularweight peptides and proteins.
- Nanoparticles are based on a cross-linked N-isopropyl-acrylamide (NIPAm) core containing a charge-based bait.
- A shell surrounding the NIPAm core acts as a sieve to exclude proteins too large to penetrate the porosity of the shell.
- The nanoparticles achieve three essential functions:
 - Capturing and concentrating dilute amounts of target analytes
 - Sieving of interfering proteins
 - Protection from proteolysis
- Proteins sequestered by the particles can be analyzed by mass spectrometry, Western blotting, and other immunoassays.

Applications of nanoparticle capture in infectious diseases

Lyme Disease

- Douglas TA, et al. The use of hydrogel microparticles to sequester and concentrate bacterial antigens in a urine test for Lyme disease. Biomaterials 32(4): 1157-66, 2011.
- Magni R, *et al.*, Application of Nanotrap technology for high sensitivity measurement of urinary outer surface protein A carboxyl-terminus domain in early stage Lyme borreliosis. *J Transl Med* 13: 346, 2015.

Chagas Disease

- Castro-Sesquen YE, *et al.* Use of a novel chagas urine nanoparticle test (chunap) for diagnosis of congenital chagas disease. *PLoS Negl Trop Dis* 8(10): e3211, 2014.
- Castro-Sesquen YE, et al. Use of a chagas urine nanoparticle test (Chunap) to correlate with parasitemia levels in *T. cruzi*/HIV co-infected patients. *PLoS Negl Trop Dis* 10(2): e0004407, 2016.

Toxoplasmosis

Steinberg HE, et al. Toward detection of toxoplasmosis from urine in mice using hydro-gel nanoparticles concentration and parallel reaction monitoring mass spectrometry. Nanomedicine 14(2): 461-469, 2018.

Application of nanoparticle capture in babesiosis

- Determine the capability of nanoparticles to sequester proteins of *Babesia microti* from whole blood by using the hamster model of babesiosis.
- Identify captured proteins by mass spectrometry.
- Present a preliminary description of the *B. microti* proteome to complement previous genomic and transcriptomic studies.
- Contribute to the development of newer diagnostic tools.

Experimental strategy

- A) Whole blood is collected from experimentally infected hamsters (≥30% parasitemia; *B. microti* G1; ATCC[®] PRA-398[™]).
- B) Hydrogel nanoparticles sequester parasite proteins and exclude high abundance proteins from the host.
- C) Proteins are enriched and eluted from nanoparticles.
- D) MS is performed using a LTQ[™] Fusion[™] Mass Spectrometer (Thermo Fisher Scientific[™]). Tandem mass spectra are searched against a *Babesia* protein database (Piroplasma.db).

Biological function

Magni RL, et al. Int J Parasitol 49(2): 139-144, 2019.

Biological function

ATCC

Top 20 ranking of identified proteins

	Gene ID	Description	No. PSMs ¹	No. Peptides²	No. Unique Peptides ³	Coverage ⁴	AA length⁵	MW (kDa)⁵
	BMR1_03g00785	BmGPI12, BMN1 family, BMN1-9, BmSA1 orthologue BMN	104	26	26	53.0	328	35.4
	BMR1_03g03720	Myosin ATPase	79	44	44	35.3	1629	183.6
	BmR1_04g06050	Heat shock 70kDa protein 5 HSP	64	24	24	45.7	647	71.5
BMN:	BMR1_03g03315	Chaperonin GroEL HSP	50	23	23	56.5	568	60.7
Surface/	BMR1_03g04636	F-type H+-transporting ATPase oligomycin sensitivity conferral	44	24	24	40.7	759	86.2
secreted	BmR1_04g05605	F-type H+-transporting ATPase subunit alpha	40	19	17	48.1	532	58.4
antigens	BMR1_01G02545	HSPA1_8, heat shock 70kDa protein 1/8 HSP	38	23	23	43.9	644	70.2
anagono	BmR1_04g08040	Molecular chaperone DnaK protein HSP	36	21	21	42.7	663	72.5
	BMR1_02g01245	F-type H+-transporting ATP synthase subunit beta	36	15	10	46.7	514	55.3
	BMR1_03g00005	BMN1 family (Fragment) BMN	29	9	2	44.3	291	32.8
	BMR1_03g00960	Uncharacterized protein	27	15	15	42.8	439	49.9
	BMR1_03g04270	Chaperonin GroEL HSP	27	14	14	28.8	650	70.9
HSP:	BmR1_04g09925	Papain family cysteine protease	26	9	9	35.5	445	49.8
Heat	BMR1_03g01005	HAD ATPase P-type family IC	25	18	18	22.9	1234	134.2
shock	BmR1_04g05480	Uncharacterized protein	25	15	15	66.8	298	33.5
proteins	BMR1_02g04275	BmGPI10, BMN1 family, N1-21a orthologue BMN	25	9	2	40.1	304	34.4
protonio	BMR1_01G02590	Solute carrier family 25 (Mitochondrial carrier, adenine nucleotide)	23	15	15	55.2	306	33.6
	BMR1_01G03280	BMN1-20 BMN	22	11	11	29.5	535	59.6
	BMR1_01G01670	Protein disulfide-isomerase A1	21	15	15	39.7	471	53.8
	BMR1_02g04100	Hsp70 protein HSP	19	13	13	27.0	649	72.8

The total number of identified peptide spectra matched for the protein.² The total number of distinct peptide sequences identified in the protein.

³ The number of peptide sequences that are unique to a protein and which do not occur in the proteins of any other group.

⁴ The percentage of the protein sequence covered by identified peptides. ⁵ Amino acid length and calculated molecular weight of the protein.

Seroreactive antigens

Identification of <i>B. microti</i> proteins with reported immune responses <i>in vivo</i> ¹							
Gene ID	Description	Class 2	lg Response ¹	AA length	MW (kDa)	<i>P. falciparum</i> ortholog	
BMR1_03g00785	BmGPI12, BMN1 family, BMN1-9, BmSA1 orthologue	GPI	lgM/lgG	328	35.4		
BMR1_02g04275	BmGPI10, BMN1 family, N1-21a orthologue	GPI	lgG	304	34.4		
BMR1_02g03140	S1/P1 Nuclease	SEC	lgM/lgG	373	42.8	PF3D7_1411900	
BMR1_03g00947	conserved Plasmodium protein, unknown function	SEC	lgM/lgG	438	48.7	PF3D7_1324300	
BMR1_01G00985	conserved Plasmodium protein, unknown function	SEC	lgM/lgG	1025	114.4	PF3D7_0822900	
BMR1_02g04280	BMN2 family, possible orthologue of N1-10-2	ТМ	lgM	519	60.9		
BmR1_04g07535	N1-15 protein, maltese-cross seroactive antigen	SEC	lgG	2396	265.7		
BMR1_03g04695	Rhoptry neck protein 2		lgM/lgG	1483	165.7	PF3D7_1452000	
BMR1_03g00020	BMN2 family	SEC	lgM	474	55.4		
BmR1_04g07556	Uncharacterized protein	ТМ	lgM	218	24.4		
BmR1_04g05531	MDN1, REA1, midasin		lgG	4337	493.1	PF3D7_1434500	
As reported in Silva, J.C., et al. 2016. Sci. Rep. 6: 35284. ² GPI, Glycosylphosphatidylinositol; <u>SEC, secreted; TM,</u>							

BMR1_03g00785 IFA

03g00785/DAPI

BMR1

Magni RL, et al. Int J Parasitol 49(2): 139-144, 2019.

transmembrane

Seroreactive antigens

Identification of <i>B. microti</i> proteins with reported immune responses <i>in vivo</i> ¹							
Gene ID	Description	Class 2	lg Response ¹	AA length	MW (kDa)	<i>P. falciparum</i> ortholog	
BMR1_03g00785	BmGPI12, BMN1 family, BMN1-9, BmSA1 orthologue	GPI	lgM/lgG	328	35.4		
BMR1_02g04275	BmGPI10, BMN1 family, N1-21a orthologue	GPI	lgG	304	34.4		
BMR1_02g03140	S1/P1 Nuclease	SEC	lgM/lgG	373	42.8	PF3D7_1411900	
BMR1_03g00947	conserved Plasmodium protein, unknown function	SEC	lgM/lgG	438	48.7	PF3D7_1324300	
BMR1_01G00985	conserved Plasmodium protein, unknown function	SEC	lgM/lgG	1025	114.4	PF3D7_0822900	
BMR1_02g04280	BMN2 family, possible orthologue of N1-10-2	ТМ	lgM	519	60.9		
BmR1_04g07535	N1-15 protein, maltese-cross seroactive antigen	SEC	lgG	2396	265.7		
BMR1_03g04695	Rhoptry neck protein 2		lgM/lgG	1483	165.7	PF3D7_1452000	
BMR1_03g00020	BMN2 family	SEC	IgM	474	55.4		
BmR1_04g07556	Uncharacterized protein	ТМ	lgM	218	24.4		
BmR1_04g05531	MDN1, REA1, midasin		lgG	4337	493.1	PF3D7_1434500	
As reported in Silva, J.C., et al. 2016. Sci. Rep. 6: 35284. ² GPI, Glycosylphosphatidylinositol; SEC, secreted; TM,							

BMR1_03g00947 IFA

transmembrane

Summary of proteomics of B. microti study

- We present a partial description of the *B. microti* proteome by successfully capturing and identifying parasite proteins from whole blood by using a combination of nanotechnology and mass spectrometry.
- The catalog of proteins mirrors the metabolically active trophozoite stage.
- Surface/secreted antigens are highly abundant in the *B. microti* proteome and serve as useful biomarkers of infection.
- The nanotechnology approach avoids the cumbersome separation of infected erythrocytes and/or free parasites from the sample.
- The molecular sieve and affinity functions minimizes the capture of highly abundant interfering proteins from the host.
- Magni RL, et al. Analysis of the Babesia microti proteome in infected red blood cells by a combination of nanotechnology and mass spectrometry. Int J Parasitol 49(2): 139-144, 2019.

- Diseases transmitted by ticks are a serious and growing public health concern in the United States.
- There remain several gaps in TBD research, education, prevention, and treatment.
- ATCC offers a variety of resources critical to advancing TBD research priorities.
- Ongoing research projects in ATCC are focused on improving diagnostic methods for babesiosis.

Cultivating collaboration to support global health

Upcoming webinars:

- Making Sense Out of Microbiome Data The Importance of Standards | August 22, 12:00 ET
- STR Profiling for Mouse Cell Lines: Another Tool to Combat Cell Line Misidentification | September 12, 12:00 ET

www.atcc.org/webinars

© 2019 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. LTQ, Fusion, and Thermo Fisher Scientific are trademarks of Thermo Fisher Scientific. ddPCR is a trademark of Bio-Rad Laboratories, Inc.

