

Mouse STR Profiling: A new addition to ATCC's authentication portfolio

Balsam Shawky, M.S. Senior Biologist, ATCC

Brian Shapiro, Ph.D. Scientific Content Specialist, ATCC

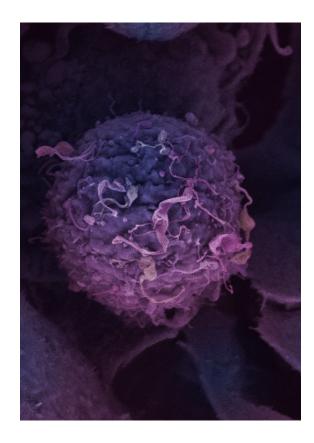
Credible Leads to Incredible™

About ATCC

- Founded in 1925, ATCC is a non-profit organization with HQ in Manassas, VA, and an R&D and Services center in Gaithersburg, MD
- World's largest, most diverse biological materials and information resource for microbes – the "gold standard"
- Innovative R&D company featuring gene editing, microbiome, NGS, advanced models
- World leader in cell line and microbe authentication

- Partner with government, industry, and academia
- Leading global supplier of authenticated cell lines, viral and microbial standards
- Sales and distribution in 150 countries, 18 international distributors
- Talented team of 450+ employees, over one-third with advanced degrees

Agenda: Cell line authentication for human and mouse cells


Introduction: Misidentification of cell lines

Cell line authentication

- Short tandem repeat (STR) profiling technique
- Mouse STR profiling

When and why should you authenticate

Summary

Consequences of using misidentified cell lines

- Loss of cell line
- Loss of time and money
- Misinformation in the public domain
- Discordant or irreproducible results
- Publication retraction
- Tarnished reputation

"If we're not using what we think we're using, we're not testing our hypotheses. We're just gumming up the literature. I'm not sure what we're doing, but that's not science."

Jeffrey Boatright, Emory University, The Big Clean Up, The Scientist Magazine®, September 1, 2015

Misidentification of cell lines in the literature: 1994-2017

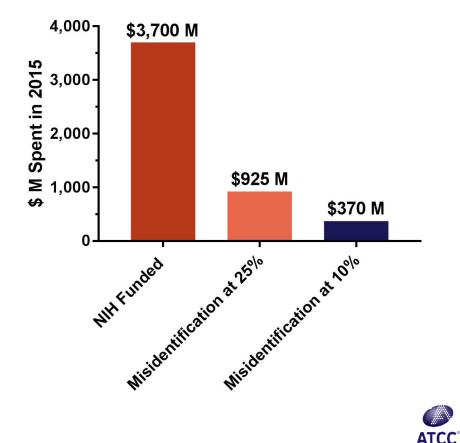
Year	Title of article	Reference
1994	Re-examination of the McCoy cell line for confirmation of its mouse origin	Clin Diagn Virol 2(2):95-103, 1994.
2009	Genetic profiling reveals cross-contamination and misidentification of 6 adenoid cystic carcinoma cell lines: ACC2, ACC3, ACCM, ACCNS, ACCS and CAC2.	PLoS one 4(6):e6040, 2009.
2010	Verification and unmasking of widely used human esophageal adenocarcinoma cell lines.	JNCI 102(4):271, 2010.
2013	A forensic path to RGC-5 cell line identification: lessons learned.	Invest Ophthalmol Vis Sci 54(8):5712-9, 2013.
2014	SNP Array profiling of mouse cell lines identifies their strains of origin and reveals cross-contamination and widespread aneuploidy	BMC Genomics 15:847, 2014.
2017	Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines.	In Vitro Cell Dev Biol Anim 53(3)225-230, 2017.
2018	A comprehensive analysis of e-CAS cell line reveals they are mouse macrophages	Sci Rep 8(1):8237, 2018

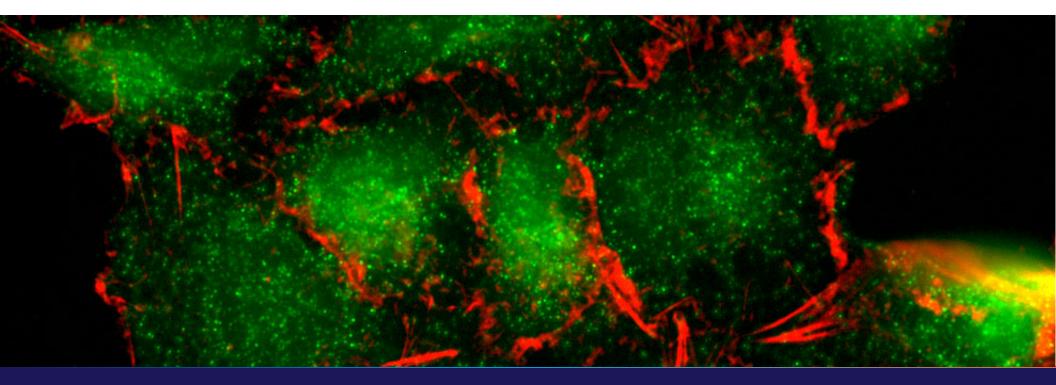
Impact of misidentified cell lines on applied research

	Misidentification of frequently used	l esophageal adenocarcino	ma cell lines
Cell Line	Purported	STR confirmed (ATCC S	TR Profile database)
SEG-1	Esophageal adenocarcinoma cell line	H460 (ATCC® HTB-177™)	Lung carcinoma (large cell lung cancer)
BIC-1	Esophageal adenocarcinoma cell line	SW620 (ATCC® CCL-227™)	Colorectal adenocarcinoma
SK-GT-5	Esophageal adenocarcinoma cell line	SK-GT-2	Gastric fundus carcinoma

Experimental results based on contaminated cell lines...

- Clinical trial recruiting EAC patients
- 100 scientific publications
- At least 3 NIH cancer research grants
- 11 US patents


Boonstra, J.J., et al. JNCI.102(4):271, 2010



Economic impact of misidentified cell lines

NIH Reporter for projects using "cell line" or "cell culture" – US \$3.7B

- If 25% of research is conducted using misidentified cell lines then the loss could be \$925 M
- If this number could be lowered to 10% then the cost is be reduced to \$370 M

Short Tandem Repeat (STR) Profiling

A549 non-small cell lung carcinoma cell line expressing p53

STR – A standard for the authentication of human cell lines

ASN-0002 - Authentication of Human Cell Lines: Standardization of STR Profiling

- The standard describes a consistent, inexpensive, and universally applicable method for authenticating new and established cell lines and their criteria for use
- Chair: John R.W. Masters, University College of London
- Co-Chair: Yvonne A. Reid, ATCC (Retired)
- Final action by ANSI: January 25, 2012
- Published date: February 2, 2012

Barallon, R. et al. In Vitro Cell Dev Biol Anim 46: 727, 2010.

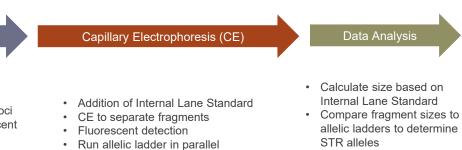
STR analysis for cell line identity: characteristics

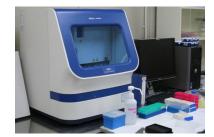
- Target sequence consists of microsatellite DNA (short repeats, 2 – 6 bp, 5 – 50 times)
- Typically use 1-2 ng DNA
- Discrete alleles allow digital record of data
- Markers distributed throughout the genome
- Highly variable within populations; highly informative; high discriminating power
- High observed heterozygosity >70% (more alleles = higher power of discrimination)
- Robust and reproducible results
- Low stutter characteristics
 - 2 bp has high stutter
 - 4 bp has low stutter

Properties of STRs for DNA profiling (Human Loci)

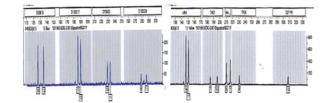
Locus name	Chromosome location	Repeat motif	No. repeating units
D16S539	16q24-qtr	GATA	5-15
D7S820	7q11.21-22	GATA	6-15
D13S317	13q22-q31	TATC	5-15
D5S818	5p21-q31	AGAT	7-16
CSF1PO	5q33.3-34	TAGA	6-16
ТРОХ	2p23-pter	GAAT	6-13
vWA	12p23-pter	[TCTA] [TCTG]	10-24
TH01	11p15.5	TCAT	3-14
Amelogenin	Gender determination	on (not STR marker)	
	Power of discrimin	nation 1 : 1.2 x 10 ⁸	

Retrospective studies on 500 human cell lines – minimum of 8 STR markers required to uniquely identify a human cell line


Outline of STR profiling procedure

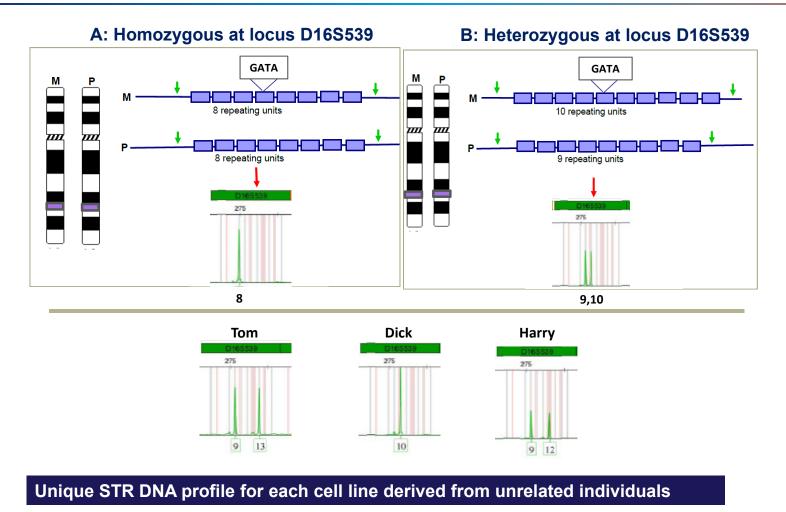

Cells/DNA on Whatman FTA paper

- Amplification of STR loci Simultaneous fluorescent
 - labeling

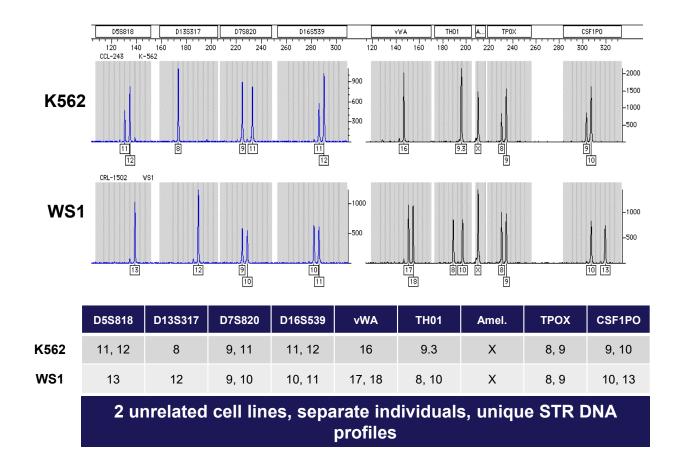


• Compare to databases

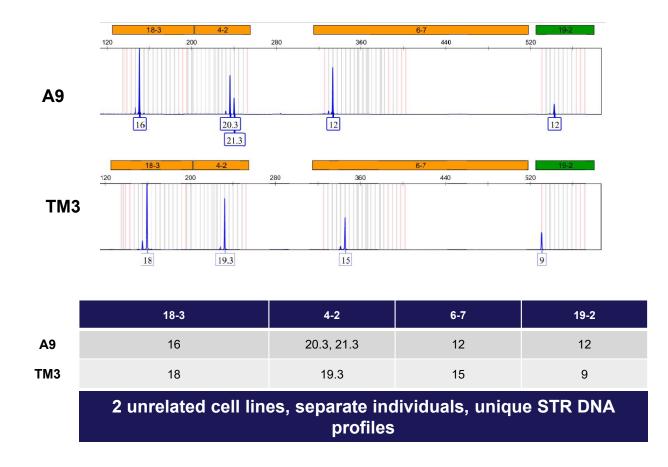
Requirements:


- Gene sequencer
- Thermocycler
- Primer sets
- STR database of cell lines
- Experienced technicians

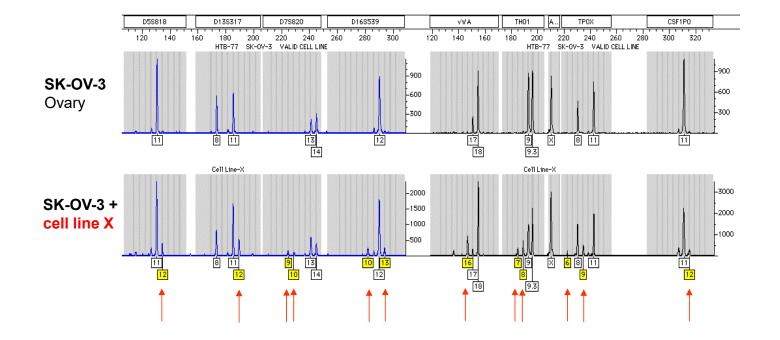
Sample Electropherogram



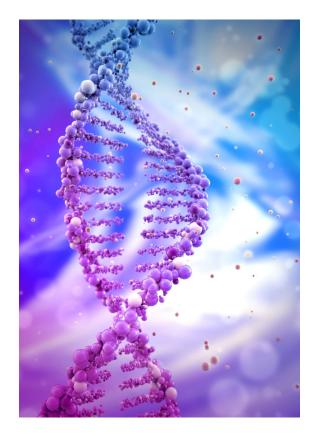
STR DNA polymorphism



Unrelated human cell lines: STR analysis



Unrelated mouse cell lines: STR analysis


Cellular cross-contamination

ATCC cell line authentication services

	ATCC [®] No.	Designation	Where to order
Human	135-XV™	FTA Sample Collection Kit for Human Cell Authentication Service	www.atcc.org/humanSTR
Mycoplasma	136-XV™	FTA Sample Collection Kit for PCR-based Mycoplasma Detection Service	www.atcc.org/mycotesting
Mouse	137-XV™	FTA Sample Collection Kit for Mouse Cell Authentication Service	www.atcc.org/mouseSTR

Mouse STR Profiling

Mouse STR Consortium

October 2016 12 labs joined the Mouse Cell Line Authentication Consortium

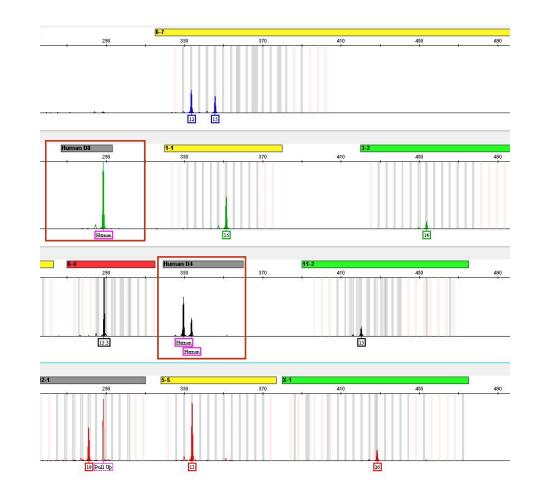
Goal: Validate an STR multiplex PCR assay to distinguish Mouse cell lines

NIST distributed testing kits containing:

- DNA from 50 ATCC mouse cell lines (blinded)
- Primer Mix
- PCR Master Mix
- Calibrants (allelic ladder)
- Control DNA
- Protocols

RESEARCH ARTICLE

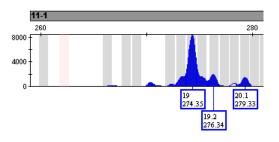
Interlaboratory study to validate a STR profiling method for intraspecies identification of mouse cell lines


Jamie L. Almeida^{1*}, Aleksandra Dakic², Karin Kindig², Maikan Kone², Deborah L. D. Letham³, Scott Langdon⁴, Ruth Peat⁵, Jayamalini Holding-Pillai⁵, Erin M. Hall⁶, Mark Ladd⁶, Megan D. Shaffer⁶, Heath Berg⁷, Jinliang Li⁸, Georges Wigger⁹, Steve Lund¹⁰, Carolyn R. Steffen¹¹, Barbara B. Fransway¹², Bob Geraghty¹³, Manuela Natoli¹³, Beth Bauer¹⁴, Susanne M. Gollin¹⁵, Dale W. Lewis¹⁵, Yvonne Reid¹

1 National Institute of Standards and Technology, Biosystems and Biomaterials Division, Gaithersburg, Maryland, United States of America, 2 ATCC, Standards Resource Center, Manassas, Virginia, United States of America, 3 Charles River Laboratories, Malvern, Pennsylvania, United States of America, 4 Duke University, Durham, North Carolina, United States of America, 5 The Francis Crick Institute, Cell Services, London, United Kingdom, 6 Genetica Cell Line Testing – a LabCorp brand, Burlington, North Carolina, United States of America, 7 IDEXX BioAnalytics, Columbia, Missouri, United States of America, 8 Laragen Inc., Culver City, California, United States of America, 9 Microsynth AG, Balgach, Switzerland, 10 National Institute of Standards and Technology, Statistical Engineering Division, Gaithersburg, Maryland, United States of America, 11 National Institute of Standards and Technology, Biomolecular Measurement Division, Gaithersburg, Maryland, United States of America, 12 University of Arizona, Genetics Core Lab, University of Arizona Genetics Core, Tucson, Arizona, United States of America, 13 University of Maryland, College Park, Maryland, 15 University of Pittsburgh, Department of Human Genetics, Pittsburgh, Pennsylvania, United States of America

Mouse STR Consortium: the assay

- Primers designed to *Mus musculus musculus* (NCBI build 38.1)
- 18 Mouse STR loci & 2 Human loci for contamination detection
- New STR assay builds on NIST's 9 marker assay published in 2014
 - Mouse cell line authentication; J.Almeida Cytotechnology 2014 Jan; 66(1): 133 - 147



ATCC°

Mouse STR Consortium: the results

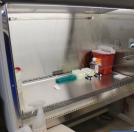
- 1) Unique STR profiles obtained for each mouse cell line tested
- 42 Validated Mouse STR profiles uploaded to NCBI Biosample (≥ 98% concordance)
- STR Locus 11-1 removed due to abnormal peak morphology

BioSample	BioSample V			Search
	Adva	anced		
Full 🗸				Send to: -
WEHI-3, mo	use cell line STR profile from	ATCC		
dentifiers	BioSample: SAMN11397664; Samp	le name: WEHI-3		
Organism		ta; Melazoa; Eumetazoa; Bilateria; Deuterostomia; Chordata; Ci domorpha; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Bo Mus; Mus		
Package	Model organism or animal; version 1	<u></u>	STR profile	
Attributes	cell line	WEHI-3	STR 18-3	18
	culture collection	ATCC: TIB-68	STR 4-2	21.3
	strain	BALB/c		
	age	unknown	STR 6-7	12,13,14
	sex	unknown	STR 19-2	12,13
	morphology tissue	lymphocyte-like peripheral blood	STR 1-2	17
	repository	American Type Culture Collection (ATCC)	100 C 100	
	disease	Leukemia	STR 7-1	25.2,26.2,27.2
	cell line name alias	WEHI 3; WEHI3; Wehi-3 (Cellosaurus)	STR 1-1	15,16,18
	date established	unknown	STR 3-2	14.15
	about cells	suspension, some adherent	STR 8-1	13.14
	mouse cell line STR profile	yes	SIR 8-1	13,14
	mouse cell line STR profile status	s NIST verified	STR 2-1	16
inks	American Type Culture Collection		STR 15-3	22.3,23.3,25.5
	ATCC TIB-68		STR 6-4	18,19,20,21
BioProject	PRJNA539973 Mus musculus Retrieve all samples from this project	*	STR 11-2	18,19
	Neurove an samples non una projec		STR 17-2	16
Submission	NIST, Jamie Almeida; 2019-04-11		STR 12-1	16,17
			STR 5-5	14
			STR X-1	26,27
			STR 13-1	15.2.16.2

ATCC°

This technology has been licensed to ATCC for commercialization – available NOW!

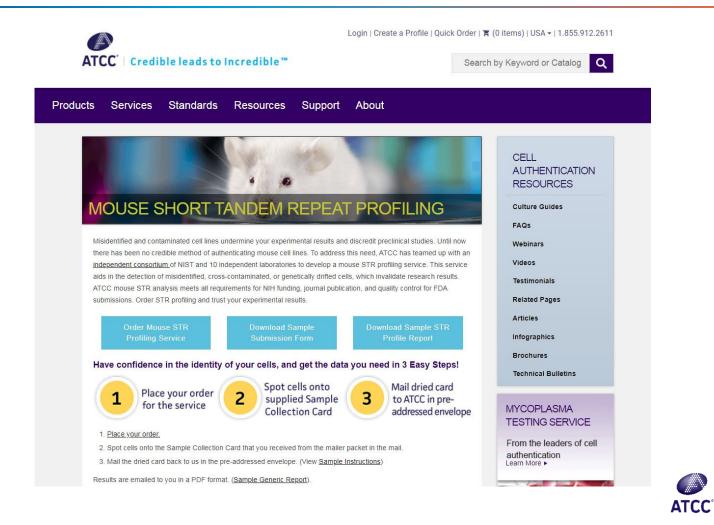
Methodology

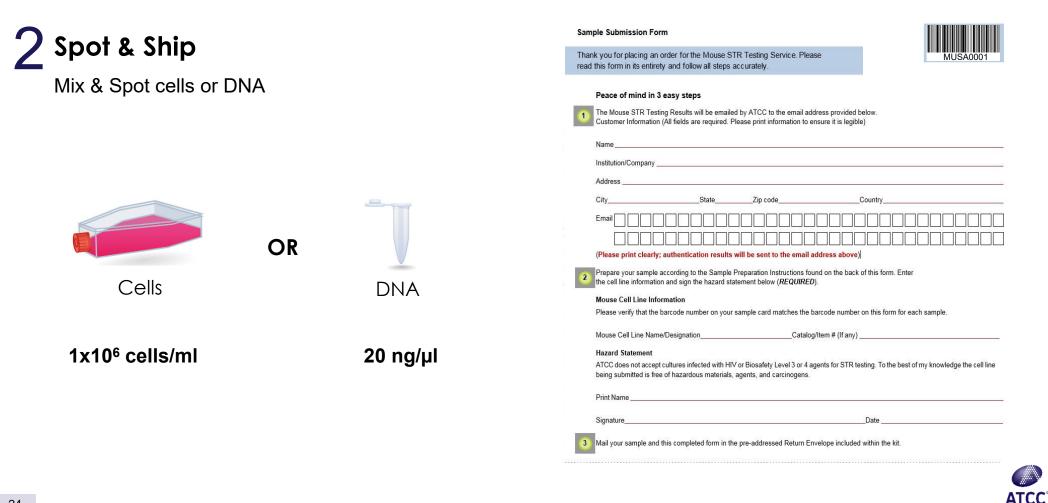

- Samples spotted and shipped on Whatman FTA[™] Cards
- Profiles compared to ATCC Mouse STR Database
- Results emailed with three to five business days

Data interpretation

- According to NIST granted US Patent (9,556,482) and 2019 consortium publication
- Database matching follows the Tanabe matching algorithm

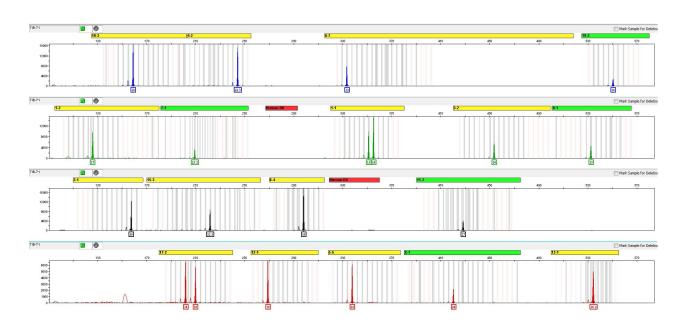
% match = <u>2 (number of alleles matching)</u> (# of query alleles + # of reference alleles)

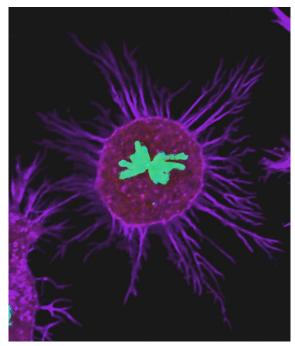




Online Order

www.atcc.org/mousestr





RAW 264.7 (ATCC[®] TIB-71[™])

RAW 264.7 cells Image courtesy of Donna Stolz, University of Pittsburgh

4 Mouse STR Report

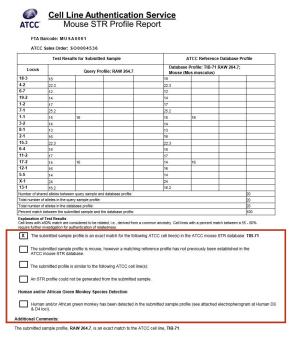
Report e-mailed within 3 to 5 business days

FTA B	arcode: Ml	J S A 0 0 0 1				
ATCC	Sales Orde	r: \$00004536				
	Test R	esults for Submittee	1 Sample		ATCC Reference I	atabase Profile
Locus		Query Pro	file: RAW 264.7		ase Profile: TIB-71 R/ e (Mus musculus)	AW 264.7;
18-3	18			18		
4-2	22.3			22.3		
6-7	12			12		
19-2	14			14		
1-2	17			17		
7-1	25.2			25.2		
1-1	15	16		15	16	
3-2	14			14		
8-1	13			13		
2-1	16			16		
15-3 6-4	22.3			22.3		
0-4 11-2	18	_		18		
17-2	17	-		17		
17-2	14	16		14	16	
12-1 5-5	16			16	-	
X.1	24	_		24	-	
13-1	16.2			16.2		
		ween query sample and	database profile:	10.2		20
		query sample profile:	adiouodo promo.			20
fotal number o	f alleles in the	database profile:				20
ercent match	between the s	ubmitted sample and th	e database profile:			100
equire further X The su The su The su	investigation fo ubmitted sam	or authentication of relat ple profile is an exac ple profile is mouse.	ted; i.e., derived from a con tedness. t match for the following however a matching refe	ATCC cell line(s)	in the ATCC mouse S	FR database: TIB-71
_		to in nimilar to the fel	lowing ATCC cell line(s)			

 Human and/or African green monkey has been detected in the submitted sample profile (see attached electropherogram at Human D8 & D8 Loc)
 Additional Comments:

The submitted sample profile, RAW 264.7, is an exact match to the ATCC cell line, TIB-71.

FTA Barcode: MUSA0001


ATCC Sales Order: \$00004536

	Test Re	esults for Submitted S	Sample		ATCC Reference D	atabase Profile
Locus	Query Profile: RAW 264.7			Database Profile: TIB-71 RAW 264.7; Mouse (Mus musculus)		
18-3	18			18		
4-2	22.3			22.3		
6-7	12			12		
19-2	14			14		
1-2	17			17		
7-1	25.2			25.2		
1-1	15	16		15	16	
3-2	14			14		
8-1	13			13		
2-1	16			16		
15-3	22.3			22.3		
6-4	18			18		
11-2	17			17		
17-2	14	16		14	16	
12-1	16			16		
5-5	14			14		
X-1	24			24		
13-1	16.2			16.2		
Number of shar	ed alleles bet	ween query sample and d	atabase profile:		·	20
Total number of	alleles in the	query sample profile:				20
Total number of	alleles in the	database profile:				20
Percent match t	between the s	ubmitted sample and the	database profile:			100

4 Mouse STR Report

Report e-mailed within 3 to 5 business days

X The submitted sample profile is an exact match for the following ATCC cell line(s) in the ATCC mouse STR database: TIB-71

The submitted sample profile is mouse, however a matching reference profile has not previously been established in the ATCC mouse STR database.

The submitted profile is similar to the following ATCC cell line(s):

An STR profile could not be generated from the submitted sample.

Human and/or African Green Monkey Species Detection

Human and/or African green monkey has been detected in the submitted sample profile (see attached electropherogram at Human D8 & D4 loci).

3 Mouse STR Report

Addendum: Comparative Output from ATCC Mouse STR Database

Cell Line Authentication Service Mouse STR Profile Report

Addendum: Comparative Output from the ATCC Mouse STR Profile Database

FTA Barcode: MUSA0001 ATCC Sales Order: SO0004536

% Match	100	100
ATCC® Cat. No.		TIB-71
Designation	RAW 264.7	RAW 264.7
18-3	18	18
4-2	22.3	22.3
6-7	12	12
19-2	14	14
1-2	17	17
7-1	25.2	25.2
1-1	15,16	15,16
3-2	14	14
8-1	13	13
2-1	16	16
15-3	22.3	22.3
6-4	18	18
11-2	17	17
17-2	14,16	14,16
12-1	16	16
5-5	14	14
X-1	24	24
13-1	16.2	16.2

Definitions of terms used in this report:

Artifact:

A non-allelic product of the amplification process, an anomaly of the detection process, or a by-product of primer synthesis.

Pull-up:

A term used to describe when signal from one dye color channel produces artificial peaks in another, usually adjacent, color.

Spike: An extraneous peak resulting from dust, dried polymer, an air bubble, or an electrical surge.

Dye blob: Free dye not coupled to primer that can be injected into the capillary.

Mouse STR at ATCC – key points

- ATCC worked with NIST to pioneer STR profiling for mouse cell lines (Available NOW)
- ATCC authentication services are simple and inexpensive, after placing your order:
 - Spot
 - Dry
 - Mail
 - Receive you results in three to five days

Report includes:

- Submitted & Matched Allele Calls
- Contamination check
- Comparative output for database comparison
- PDF of the submitted sample profile

Why authenticate? Journals now require cell authentication

Publisher and/or Journal Title	Required	Encouraged
American Association for Cancer Research journals (8)		X
BioMed Central journals (200+)		X
Endocrine Society journals (5)	X	
Nature journals (approximately 150)	X	
Society for Endocrinology journals (3)	X	
BioTechniques		X
Carcinogenesis	Х	
Cell Biochemistry and Biophysics	X	
Cell Biology International	X	
International Journal of Cancer	X	
Investigative Ophthalmology & Visual Science		X
In Vitro Cellular & Developmental Biology—Animal	Х	
Journal of Molecular Biology		X
Journal of the National Cancer Institute	X	
Molecular Vision	X	
Neuro-Oncology		X
PLOS ONE		X

Fusenig NE, The need for a worldwide consensus for cell line authentication: Experience implementing a mandatory requirement at the International Journal of Cancer. 2017. https://doi.org/10.1371/journal.pbio.2001438

Why authenticate? Agencies require cell authentication

NIH revised guidelines to applications for funding - Enhancing Reproducibility through Rigor and Transparency (effective Jan. 25, 2016)

Authentication of key biological and/or chemical resources

 NIH expects that key biological and/or chemical resources will be regularly authenticated to ensure their identity and validity for use in the proposed studies

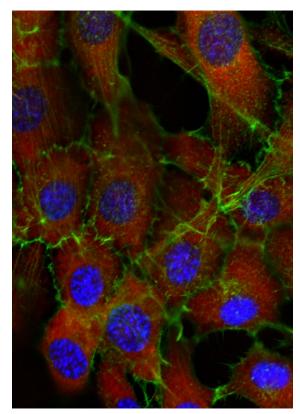
Notice Number: NOT-OD-15-103 (published June 9, 2015): http://grants.nih.gov/grants/guide/notice-files/NOT-OD-15-103.html

FDA Guidance for Industry: Characterization and Qualification of Cell Substrates and Other Biological Materials

 Provides manufactures of viral vaccines recommendations for the characterization of cell substrates and other biological materials for human use

Docket No: FDA-2006-D-0223; February 2010

When to authenticate?

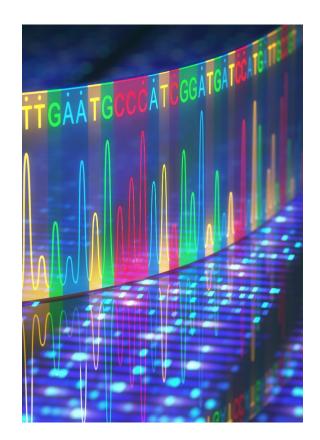


- At the beginning and conclusion of a study
 Before submission of grant applications
 - -Before manuscript submissions
- After preparing a cell bank
- At regular intervals throughout study
- When in doubt
 - -Novel phenotypic behavior observed

Summary

- Cell line misidentification and contamination bears a high cost
- STR technology offers a powerful means to identify cells
- ATCC has helped pioneer STR profiling for mouse and human cells
- Journals and funding agencies require evidence of authentication
- There is no wrong time to authenticate your cell lines
- www.atcc.org/mouseSTR for more information

NIH 3T3 cells Image courtesy of Nicole Carrejo, Rice University


Cultivating collaboration to support global health

Go to <u>www.atcc.org/mouseSTR</u> for the ATCC Mouse STR Profiling Service

Upcoming webinars:

 Simplifying assay development with molecular standards: Remove culturing from the equation September 26, 12:00 ET

www.atcc.org/webinars

ΔΤCC

© 2019 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. FTA is a registered trademark of GE Healthcare. Whatman is a trademark of GE Healthcare.