Viral metagenomics and the use of standards: from biology to clinical applications

Tasha M. Santiago-Rodriguez, Ph.D. Bioinformatician R&D Diversigen, Houston, Texas

© 2020 Diversigen® is a subsidiary of OraSure Technologies, Inc., all rights reserved

About ATCC

- Founded in 1925, ATCC is a non-profit organization with HQ in Manassas, VA, and an R&D and Services center in Gaithersburg, MD
- World's largest, most diverse biological materials and information resource for cells and microbes – the "gold standard"
 - Innovative R&D company featuring gene editing, microbiome, NGS, advanced models
- cGMP biorepository

- Partner with government, industry, and academia
- Leading global supplier of authenticated cell lines, viral and microbial standards
- Sales and distribution in 150 countries, 19 international distributors
- Talented team of 450+ employees, over onethird with advanced degrees

- Diversigen overview
- What do we know so far about virome research?
- Biases in virome research
- Application of mock communities in virome research
- Potential applications of standards in the detection of ongoing and future pathogenic human viruses: considerations from SARS-CoV 2

• Diversigen overview

- What do we know so far about virome research?
- Biases in virome research
- Application of mock communities in virome research
- Potential applications of standards in the detection of ongoing and future pathogenic human viruses: considerations from SARS-CoV 2

Diversigen as part of OraSure Technologies

- Diversigen overview
- What do we know so far about virome research?
- Biases in virome research
- Application of mock communities in virome research
- Potential applications of standards in the detection of ongoing and future pathogenic human viruses: considerations from SARS-CoV 2

omic studies focus on bacteria

Why are viruses important?

Viruses can be found throughout the body (gut, oral cavity, skin, bladder, blood, respiratory tract)

Viruses, particularly phages, are estimated to outnumber bacteria by a factor of 10:1 in the human gut

Viral communities vary in the context of health and disease, even in the absence of known pathogens

Viral communities change in response to external factors (antibiotic-treatment, intimate contact and diet)

Viral profiles of stool can provide insight into diets (i.e., dairy productassociated phage, plant pathogens)

New studies are shedding light on the ability of the virome to influence immune response

Virus-mediated approaches show promise in treating antimicrobial resistant infections

Virome may provide answers to microbially-mediated phenomena where bacterial studies have come up short

Viruses are acquired from birth and modulated by diet

RESEARCH

Open Access

Discordant transmission of bacteria and viruses from mothers to babies at birth

Rabia Maqsood^{1,2†}, Rachel Rodgers^{3†}, Cynthia Rodriguez³, Scott A. Handley⁴, I. Malick Ndao³, Phillip I. Tarr^{3,5}, Barbara B. Warner³, Efrem S. Lim^{1,2*} and Lori R. Holtz^{3*}¹⁰

RESEARCH Host-Microb	
	Check for updates

Fecal Viral Community Responses to High-Fat Diet in Mice

Anjelique Schulfer,^a Tasha M. Santiago-Rodriguez,^b Melissa Ly,^b Joshua M. Borin,^c Jessica Chopyk,^b ^(b) Martin J. Blaser,^{a,d} David T. Pride^{b,e}

Viruses in samples previously thought to be sterile

ORIGINAL RESEARCH ARTICLE

Front. Microbiol., 23 January 2015 | https://doi.org/10.3389/fmicb.2015.00014

The human urine virome in association with urinary tract infections

¹Department of Pathology, University of California, San Diego, San Diego, CA, USA ²Department of Biology, San Diego State University, San Diego, CA, USA ³Department of Medicine, University of California, San Diego, San Diego, CA, USA

frontiers in Microbiology

ORIGINAL RESEARCH published: 06 September 2019 doi: 10.3389/fmicb.2019.02061

The Virome of Cerebrospinal Fluid: Viruses Where We Once Thought There Were None

Chandrabali Ghose¹, Melissa Ly², Leila K. Schwanemann², Ji Hyun Shin², Katayoon Atab², Jeremy J. Barr³, Mark Little⁴, Robert T. Schooley⁵, Jessica Chopyk² and David T. Pride^{2,5*}

Viruses in samples previously thought to be sterile

RESEARCH ARTICLE

The blood DNA virome in 8,000 humans

Ahmed Moustafa¹, Chao Xie², Ewen Kirkness¹, William Biggs¹, Emily Wong¹, Yaron Turpaz², Kenneth Bloom¹, Eric Delwart³, Karen E. Nelson⁴, J. Craig Venter^{1,4}*, Amalio Telenti^{1,4}*

1 Human Longevity Inc., San Diego, California, United States of America, 2 Human Longevity Singapore Pte. Ltd., Singapore, 3 Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America, 4 J. Craig Venter Institute, La Jolla, California, United States of America

Human viruses can predict disease risk

medicine

LETTERS https://doi.org/10.1038/s41591-019-0667-0

Prospective virome analyses in young children at increased genetic risk for type 1 diabetes

Kendra Vehik[®]^{1*}, Kristian F. Lynch¹, Matthew C. Wong², Xiangjun Tian², Matthew C. Ross², Richard A. Gibbs³, Nadim J. Ajami², Joseph F. Petrosino², Marian Rewers⁴, Jorma Toppari^{5,6}, Anette G. Ziegler^{7,8,9}, Jin-Xiong She¹⁰, Ake Lernmark[®]¹¹, Beena Akolkar¹², William A. Hagopian¹³, Desmond A. Schatz¹⁴, Jeffrey P. Krischer¹, Heikki Hyöty^{15,16}, Richard E. Lloyd² and the TEDDY Study Group¹⁷

Viruses can be used to treat diseases

Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease

https://doi.org/10.1038/s41586-019-1742-x				
Received: 9 April 2019				
Accepted: 2 October 2019				

Published online: 13 November 2019

Yi Duan^{1,2,29}, Cristina Llorente^{1,2,29}, Sonja Lang¹, Katharina Brandl³, Huikuan Chu¹, Lu Jiang^{1,2}, Richard C. White⁴, Thomas H. Clarke⁴, Kevin Nguyen⁴, Manolito Torralba⁵, Yan Shao⁶, Jinyuan Liu⁷, Adriana Hernandez-Morales⁸, Lauren Lessor⁹, Imran R. Rahman¹⁰, Yukiko Miyamoto¹, Melissa Ly¹¹, Bei Gao¹, Weizhong Sun¹, Roman Kiesel¹, Felix Hutmacher¹, Suhan Lee¹, Meritxell Ventura-Cots¹², Francisco Bosques-Padilla¹³, Elizabeth C. Verna¹⁴, Juan G. Abraldes¹⁵, Robert S. Brown Jr¹⁶, Victor Vargas^{17,18}, Jose Altamirano¹⁷, Juan Caballería^{18,19}, Debbie L. Shawcross²⁰, Samuel B. Ho^{1,2}, Alexandre Louvet²¹, Michael R. Lucey²², Philippe Mathurin²¹, Guadalupe Garcia-Tsao^{23,24}, Ramon Bataller¹², Xin M. Tu⁷, Lars Eckmann¹, Wilfred A. van der Donk^{10,25,26}, Ry Young^{8,9}, Trevor D. Lawley⁶, Peter Stärkel²⁷, David Pride^{1,11,28}, Derrick E. Fouts⁴ & Bernd Schnabl^{1,2,28*}

- C. crescentus phages
- Cytolysin-positive E. faecalis phages
- C. crescentus phages
- Cytolysin-positive *E. faecalis* phages

Ongoing and future applications of viral metagenomics

Natural history – what is present, where, and when?

Identifying potential viral associations in unexplained illnesses

Identifying novel viral relationships with health and disease

Veterinary medicine – identifying potential novel, emerging and reemerging pathogens

Identifying viral associations as risk factors for disease

Surveillance for zoonotic diseases

- Diversigen overview
- What do we know so far about virome research?
- Biases in virome research
- Application of mock communities in virome research
- Potential applications of standards in the detection of ongoing and future pathogenic human viruses: considerations from SARS-CoV 2

Biases in virome research

Biases in virome research - Sample collection

Biases in virome research - Sample collection

Biases in virome research - Processing

Biases in virome research - Processing

Methodology Open Access Published: 28 June 2018

Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses

Marcos Parras-Moltó, Ana Rodríguez-Galet, Patricia Suárez-Rodríguez & Alberto López-Bueno 🖂

Microbiome 6, Article number: 119 (2018) Cite this article

- Lambda WR Phi29 AdenoV
- M13 MVMp PCV2a
- Control=No treatment
- □ C= Two consecutive centrifugation rounds at 3000×g for 10 min
- □ 0.45=Filtered through 0.45um membranes
- 0.22=Filtered through 0.22um membranes
- I=Iodixanol cushion
- □ C+0.45+I=Centrifugation+Filtration+Iodixanol
- SISPA= Sequence-independent, single-primer amplification
- □ MDA=multiple displacement amplification
- C+0.45+I+MDA=Centrifugation+Filtration+Iodixanol+ MDA

00

PCV2a

👹 Diversigen

Biases in virome research - Sequencing

Biases in virome research - Sequencing

Journal Pre-proof

Comparison of Illumina MiSeq and the Ion Torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses

Rachel L. Marine (Conceptualization) (Investigation) (Writing original draft) (Writing - review and editing), Laura C. Magaña (Conceptualization) (Investigation) (Writing - original draft) (Writing review and editing), Christina J. Castro (Formal analysis) (Data curation), Kun Zhao (Formal analysis) (Visualization), Anna M. Montmayeur (Resources) (Writing - review and editing), Alexander Schmidt (Resources) (Writing - review and editing), Marta Diez-Valcarce (Resources) (Writing - review and editing), Terry Fei Fan Ng (Conceptualization) (Resources) (Writing - review and editing), Jan Vinjé (Supervision) (Writing - review and editing), Cara C. Burns (Supervision) (Writing - review and editing), W. Allan Nix (Supervision) (Writing - review and editing), Paul A. Rota (Supervision) (Writing - review and editing) (Funding acquisition), M. Steven Oberste (Supervision) (Writing - review and editing) (Funding acquisition)

PII:	S0166-0934(20)30117-8
DOI:	https://doi.org/10.1016/j.jviromet.2020.113865
Reference:	VIRMET 113865

Biases in virome research - Sequencing

Diversigen

23

Biases in virome research - Bioinformatics

- Diversigen overview
- What do we know so far about virome research?
- Biases in virome research
- Application of mock communities in virome research
- Potential applications of standards in the detection of ongoing and future pathogenic human viruses: considerations from SARS-CoV 2

Mock communities in microbiome studies

- The realization of including reference materials, such as mock communities, arose very recently
- In articles published in two important microbiome and microbiology journals in 2018, only 30% reported a negative control, and 10% reported the use of a positive control
- Mock communities can be used as positive controls
 - Are still not implemented on a regular basis
 - Available through institutions, laboratories and commercial facilities
 - Most are intended for microbiome analysis
 - Very few have been developed for virome analysis

Viral mock communities (ATCC)

Juan Lopera, PhD,¹ Briana Benton, BS,¹ Jung-Woo Sohn, PhD,¹ Stephen King, MS,¹ Tasha M. Santiago-Rodriguez, PhD,² Emily B. Holister, PhD,² Matthew C. Wong, BS,³ Nadim Ajami, PhD,³ Cara Wilder, PhD¹

Table 1: Selection attributes for strains included in the ATCC[®] Virome Standards.

Virus Name	ATCC [®] No.	Genome Type	Host (ATCC [®] No.)*	Virion Structure	Reference GenBank ID	Genome Size (Kbp)	Relevance
Human herpesvirus 5	VR-538™	ds DNA	MRC-5 (CCL-171™)	Enveloped	X17403.1	229.4	Ubiquitous infection in adult humans, and significant pathogen within immunocompromised populations ¹⁰
Human mastadenovirus F	VR-931™	ds DNA	HEK-293 (CRL-1573™)	Unenveloped	NC_001454.1	34.2	Human gastrointestinal infection and severe infection in children and immunocompromised patients ¹¹
Influenza B virus B/Florida/4/2006	VR-1804™	ss (-) RNA (8 segments)	SPF embryo- nated chicken eggs	Enveloped	CY018365.1- CY018372.1	14.2	Causes worldwide human epidemics of influenza with high rates of illness and death ¹²
Zika virus	VR-1838™	ss (+) RNA	Vero(CCL-81™)	Enveloped	KX830960.1	10.8	Mosquito-borne viral infection that can cause congenital microcephaly in fetuses and infants ¹³
Human respiratory syncytial virus	VR-1540™	ss (-) RNA	HEp-2 (CCL-23™)	Enveloped	KT992094.1	15.2	Causes severe respiratory tract infections in humans ¹⁴
Reovirus 3	VR-824™	ds RNA (10 segments)	LLC-MK2 Derivative (CCL-7.1™)	Capsids	HM159613.1- HM159622.1	23.6	Human respiratory and gastrointestinal infection; oncolytic virus ^{15,16}

뷇 Diversigen

Beta-testing ATCC viral mock community (nucleic acids)

👹 Diversigen

Beta-testing ATCC viral mock community (whole virus)

ATCC viral mock communities - MetaPhIAn2

MetaPhIAn 2.0

MetaPhIAn (Metagenomic Phylogenetic Analysis) is a computational tool for profiling the composition of microbial communities from metagenomic shotgun sequencing data. MetaPhIAn relies on unique clade-specific marker genes identified from ~17,000 reference genomes (~13,500 bacterial and archaeal, ~3,500 viral, and ~110 eukaryotic), allowing:

- up to 25,000 reads-per-second (on one CPU) analysis speed (orders of magnitude faster compared to existing methods);
- unambiguous taxonomic assignments as the MetaPhIAn markers are clade-specific;
- accurate estimation of organismal relative abundance (in terms of number of cells rather than fraction of reads);
- · species-level resolution for bacteria, archaea, eukaryotes and viruses;
- extensive validation of the profiling accuracy on several synthetic datasets and on thousands of real metagenomes.

		c acids \1008)	Whole viruses (MSA2008)		
	Semi- Nextera random Only primers		Nextera Only	Semi- random primers	
False					
positives	1	1	1	1	
False					
negatives	1	2	2	3	

ATCC viral mock communities - Kraken2

Improved metagenomic analysis with Kraken 2

Derrick E. Wood, Jennifer Lu & Ben Langmead

<u>Genome Biology</u> 20, Article number: 257 (2019) Cite this article

6610 Accesses 12 Citations 75 Altmetric Metrics

		ic acids \1008)	Whole viruses (MSA2008)		
	Nextera Only			Semi- random primers	
False positives	356	258	278	352	
False negatives	1	1	1	1	

ATCC viral mock communities - VirMap

Maximal viral information recovery from sequence data using VirMAP

Nadim J Ajami ⊡, Matthew C. Wong, Matthew C. Ross, Richard E. Lloyd & Joseph F. Petrosino

Nature Communications 9, Article number: 3205 (2018) Cite this article

		c acids \1008)	Whole viruses (MSA2008)		
	Nextera Only			Semi- random primers	
False positives	1	0	0	1	
False negatives	0	0	0	0	

- Diversigen overview
- What do we know so far about virome research?
- Biases in virome research
- Application of mock communities in virome research
- Potential applications of standards in the detection of ongoing and future pathogenic human viruses: considerations from SARS-CoV 2

Viral metagenomics as a surveillance tool of SARS-CoV 2

Capabilities in SARS-CoV 2 detection reside in building a custom database with the virus sequence, as well as in the annotation tool used To confirm the ability to detect SARS-COV-2, we conducted multiple tests: -Profiling known positive samples (NCBI SRA)* -Profiling suspected negative samples (NCBI SRA) The availability of sequence libraries of varying depth allowed us to evaluate the effects of sequencing depth on virus detection and genome recovery

https://www.cdc.gov/media/subtopic/images.htm

Article | Open Access | Published: 10 August 2018

Maximal viral information recovery from sequence data using VirMAP

Nadim J Ajami ⊡, Matthew C. Wong, Matthew C. Ross, Richard E. Lloyd & Joseph F. Petrosino

Nature Communications9, Article number: 3205 (2018)Cite this article3486 Accesses8 Citations29 AltmetricMetrics

Profiling SARS-CoV2 positive and negative samples

Capabilities in SARS-CoV-2 detection reside in building a custom database with the virus sequence and the annotation tool used

To confirm the ability to detect SARS-COV-2, we conducted multiple tests:

-Profiling known positive samples (NCBI SRA)*

-Profiling suspected negative samples (NCBI SRA)

The availability of sequence libraries of varying depth allowed us to evaluate the effects of sequencing depth on virus detection and genome recovery

SAMPLE ID	SRA RUN IDENTIFIER(S)	EXPECTED SARS-COV-2 STATUS	SARS-COV- 2 DETECTED	DNA VIRUSES DETECTED	OTHER RNA VIRUSES DETECTED
WIV02	SRR11092058, SRR11092063	+			
WIV04	SRR11092057, SRR11092062	+			
WIV05	SRR11092061	+			
WIV06	SRR11092056, SRR11092060	+			
WIV07	SRR11092064, SRR11092059	+			
COPD18	SRR5677628	-	-		
COPD25	SRR5677642	-	-		-

Sequencing depth affects genome coverage of SARS-CoV-2

Application of standards in SARS-CoV-2 research

Nucleic acid extraction (RNA) efficiency cDNA conversion efficiency **oPCR** assav validation Metagenomic assay validation Novel surveillance tools Track virus evolution

development of novel diagnostics and effective therapeutics.

Application of viral standards moving forward

Expansion of viral databases and surveillance activities

Continued improvements related to collection, stabilization, extraction

New reagents and approaches

Layering virome information onto metagenomic studies to provide new biological and clinical insights

Viral standards for viral metagenomics and clinical applications will continue to evolve

QUESTIONS?

ATCC Microbiome Research Solutions

Human Microbiome Research

- Virome Standards
- Site-specific Standards
- Mycobiome Standards
- Pathogen Detection Standards

Assay Standardization

- Mock Microbial Communities
- Spike-in Standards

Environmental Microbiome Research

ABRF-MGRG Standards

www.atcc.org/microbiome

© 2020 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise.