

Poster: 351 Date: June 8, 2018

Background

Though there is an abundance of studies, applications, and publications on the human bacterial microbiome, there are a limited number of reagents and publications focused specifically on the "virome". Next-generation sequencing (NGS) has enabled virus sequencing on a large scale at an affordable cost. However, the complexities involved in the NGS methodology and the diversity of viral genomes pose a significant challenge to assay standardization. Therefore, there is a critical need for standardized reference materials across the research and diagnostics communities to serve as controls in assay development. To support this need, we are developing a viral panel comprising both quantified virus and virus nucleic acids prepared from diverse RNA and DNA virus families.

Figure 1. Relevant genotypic attributes that were evaluated for the development of the virome standards. Ideally, a comprehensive NGS virus standard would include a representative virus from each category.

Work Flow

Extract	 Extract nucleic acids from selected viruses
Quantify	 Quantify nucleic acids via Droplet Digital[™] PCR (ddPCR[™])
Mix	 Prepare a mixture of nucleic acids with 2 x 10⁴ genome control
Libraries	 Construct RNA and DNA libraries for shotgun sequencing
PCR	 Process DNA/RNA libraries with 20 PCR cycles
Sequence	 Sequence DNA and RNA libraries on the Illumina[®] MiSeq[®]
Analysis	 Analyze data using the Viral Metagenomic Analysis Pipeli the Geneious version 11.1.3 platform (www.geneious.com

ATCC 10801 University Boulevard, Manassas, Virginia 20110-2209

© 2018 American Type Culture Collection are trademarks of Bio-Rad Laboratories, Inc. Illumina[®] and MiSeq[®] are registered trademarks of Illumina, Inc. Inc. Illumina, Inc. Illumina and trademarks of Illumina, Inc. Illumina and trademarks of Illumina, Inc. Illumina, Inc. Illumina and trademarks of Illumina, Inc. Illumina, Inc. Illumina, Inc. Illumina and MiSeq[®] are registered trademarks of Illumina, Inc. Illumina, Inc. Illumina, Inc. Illumina, Inc. Illumina, Inc. Illumina, Inc. Illumina and MiSeq[®] are registered trademarks of Illumina, Inc. Illumina, Inc. Illumina and MiSeq[®] are registered trademarks of Illumina, Inc. Ill

Development and Evaluation of Standards for Virome Research

ATCC, Manassas, VA 20110

Development of Virome Mix

Table 1. Viruses selected for proof-of-concept experiments

Virus	Strain	ATCC [®] No.	Host
Human herpesvirus 1	MacIntyre	VR-539™	Vero cells
Enterovirus A71 (EV-A71)	BrCr	VR-1775™	Vero cells
Influenza B virus	B/Massachusetts/2/2012	VR-1813™	Embryonated chicken eggs
Zika virus	MR-766	VR-1838™	Vero cells
Rotavirus A	WA (TC adapted)	VR-2018™	MA104 Clone 1 cells

Figure 2. Nucleic acids from each virus were quantitated via ddPCR using proprietary molecular probe-based assays that target a single gene copy. Graphs depict no template (black droplets) and template (blue droplets), which serve as quantitation controls. The viruses ranged from 1.60 x 10⁵ genome copies/ μ L to 2.5 x 10⁷ genome copies/ μ L

Methods

Web: www.atcc.org

Methods: We normalized input viral nucleic acid genome copy numbers via ddPCR to a concentration of 2 x 10⁴ genome copies/ μ L per virus. The virome mix was then used to prepare DNA and RNA libraries for NGS using the Illumina MiSeq sequencing platform.

Data analysis: Raw sequence data was analyzed in two independent pipelines. First, VirMAP³ (Baylor College of Medicine, Houston, Texas) was used to successfully identify viral species present in the virome mix, independent of mapping to a known reference. Second, we used Geneious² software to map raw data to the published reference genomes of each virus. While we normalized input genomic copies by ddPCR, abundance by NGS varied significantly (Figure 4). Additionally, the number of reads per virus varied significantly between analysis platforms (Figure 4). This proofof-concept study highlights the need and utility of such virome standards to allow researchers to optimize their sequencing methods to recover sequences from diverse viral families.

™; Bio-Rad)	
opies/µL per virus	
j	
[®] platform	
ine (VirMAP) ¹ and n) ²	
	_

Briana Benton, B.S., Juan Lopera, Ph.D., Stephen King, M.S., Dev Mittar, Ph.D., and Reed Shabman, Ph.D.

- 1647-1649, 2012.

Figure 3. MiSeq alignment data. (A) Zika virus and (B) Herpesvirus sequence data were aligned to the respective reference genome. Data were generated with Geneious² v11.1.3. The depth of the sequence coverage (blue) and the alignment to the annotated reference genome (yellow & green) were analyzed.

Figure 4. DNA and RNA library data sets were analyzed using two different data analysis platforms. Using (A) VirMAP³ and (B) Geneious², we were able to align the paired end data to all 5 viruses with an average confidence value of 99.5% and 99.4%, respectively.

• The standardized concentration of 2 x 10^4 genome copies/µL per virus in our virome standard is sufficient for NGS library construction and data analysis.

• On average, viruses were identified with a greater than 99% confidence value using the Viral Metagenomic Analysis Pipeline³ and Geneious² software.

• Approximately 7.1% of reads from the DNA library and 3.4% of reads from the RNA library mapped to spiked viral samples. Host reads were far more abundant, which was expected based on the purity of the starting material.

Acknowledgements/References

1. We would like to thank Nadim Ajami and Matthew Wong, Baylor College of Medicine, Houston, Texas for their analysis of our MiSeq data using the Viral Metagenomic Analysis Pipeline (VirMAP).

2. Kearse M, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28(12):

3. Ajami NJ, et al. VirMAP, towards maximal viral information recovery from nontargeted sequencing. *In-review.*