

ATCC Whole Cell- and Genomic DNA-Based Microbiome Reference Standards

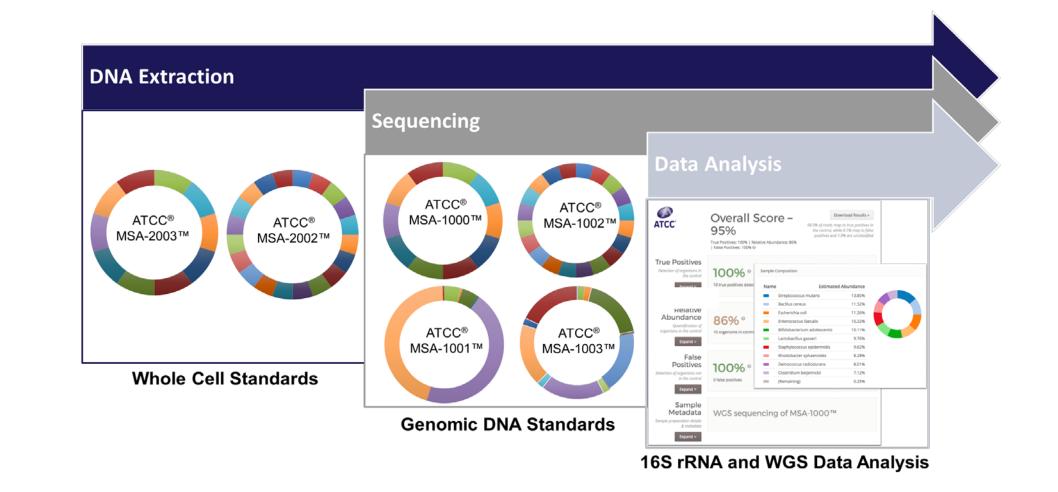
Juan Lopera¹, Ph.D., Monique Hunter¹, M.S., Ray-Yuan Chuang¹, Ph.D., Megan Amselle¹, M.T., Brian Chase¹, M.S., Stephen King¹, M.S., Maria Mayda¹, Ph.D., Kevin Zinn¹, B.S., Nicholas B. Greenfield², M.A., and Dev Mittar¹, Ph.D. ¹ATCC, Manassas, VA

²One Codex, San Francisco, CA

Background and Significance

Advancement and accessibility of next-generation sequencing technologies have influenced microbiome analyses in tremendous ways, opening up applications in the areas of clinical, diagnostic, therapeutic, industrial, and environmental research. However, due to the complexity of 16S rRNA and metagenomic sequencing analysis, significant challenges can be posed by biases introduced during sample preparation, DNA extraction, PCR amplification, library preparation, sequencing, or data interpretation. One of the primary challenges in assay standardization is the limited availability of reference materials. To address these biases and provide a measure of standardization within microbiome research and applications, ATCC has developed a set of mock microbial communities comprising fully sequenced, characterized strains (Table 1) selected on the basis of phenotypic and genotypic attributes, such as cell wall type (Gram stain classification), GC content, genome size, unique cell wall characteristics, and spore formation (Table 2). These mock communities mimic mixed metagenomic samples and offer a universal control for microbiome analyses and assay development. Moreover, these standards have been developed with different levels of mock community complexity (10 or 20 strains per community) with even or staggered relative abundance, including diverse strains that are relevant to a broad range of applications. In addition, to minimize the bias associated with data interpretation, we have developed a data analysis module in collaboration with One Codex. This module provides a user-friendly output in the form of true-positive, relative abundance, and false-negative scores for 16S rRNA community profiling and shotgun metagenomic sequencing.

ATCC[®] Microbiome Standards


 Table 1. ATCC[®] Microbiome Standards

ATCC [®] No.	Preparation	Number of Organisms	Specification Range	Applications
MSA-1000™	Genomic DNA	10	Even amounts, 2x10 ⁶ genome copies/organism	
MSA-1001™		10	Staggered amounts, 2x10 ⁴ - 2x10 ⁷ genome copies/organism	Assay development for 16S rRNA and shotgun sequencing-based profiling of
MSA-1002™		20	Even amounts, 2x10 ⁶ genome copies/organism	microorganisms
MSA-1003™		20	Staggered amounts, 2x10 ⁴ - 2x10 ⁷ genome copies/organism	
MSA-2003™	Whole cells	10	Even amounts, 2x10 ⁶ cells/organism	Parallel run controls for monitoring the
MSA-2002™		20	Even amounts, 2x10 ⁶ cells/organism	full process from extraction to analysis

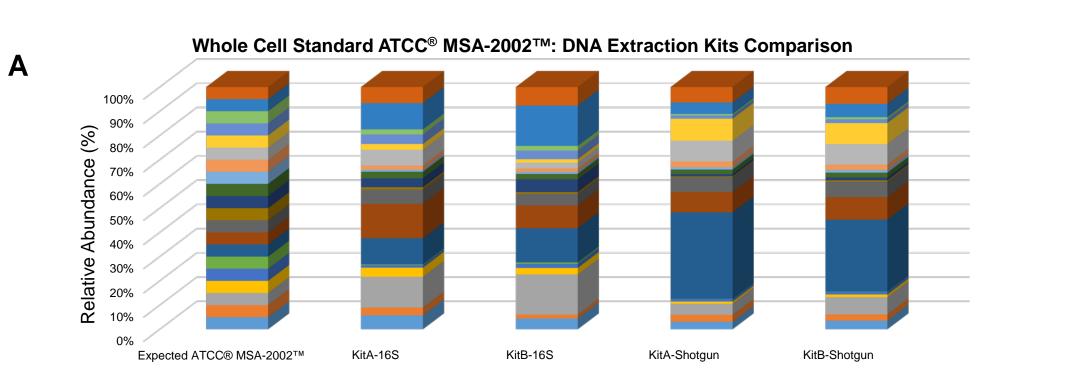
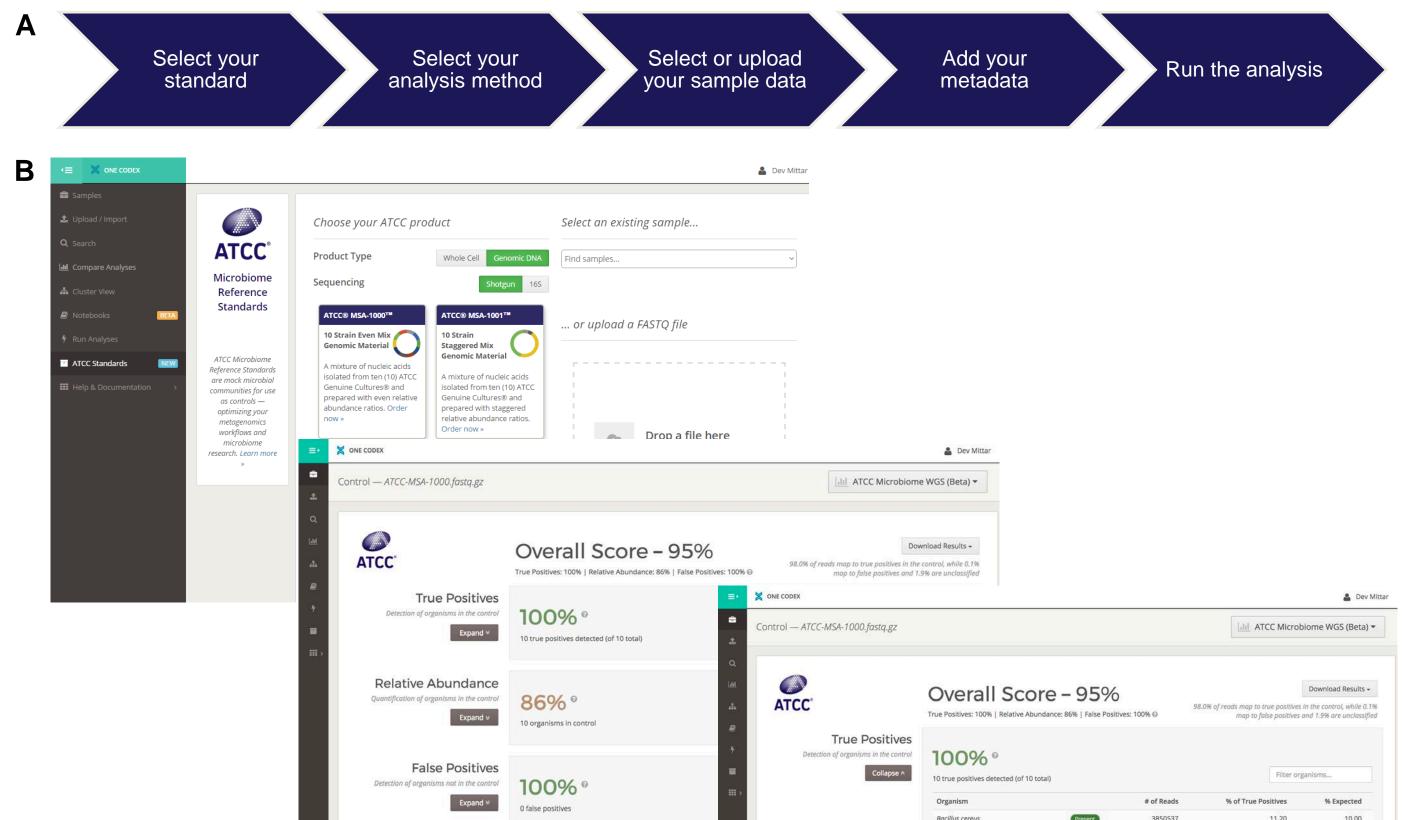

Development of the ATCC[®] Microbiome Standards

Table 2. Individual bacterial strains within the ATCC[®] Microbiome Standards


ATCC [®] No.	Name	Gram Stain	% GC	Genome Size (Mb)	Special Features	Microbiome	16S rRNA Copies
10987™	Bacillus cereus	+	35.2	5.42	Endospores former	Soil	12
15703™	Bifidobacterium adolescentis	+	59.2	2.09	Anaerobe	Gut	5
35702™	Clostridium beijerinckii	+	30	6.49	Spores former	Gut/soil	14
BAA-816™	Deinococcus radiodurans	-	66.7	3.29	Thick cell wall	Gut/environment	7
47077™	Enterococcus faecalis	+	37.5	3.36	Biofilm producer	Gut	4
700926™	Escherichia coli	-	50.8	4.64	Facultative anaerobe	Gut	7
33323™	Lactobacillus gasseri	+	35.3	1.89	Nuclease producer	Vaginal/gut	6
17029™	Rhodobacter sphaeroides	-	68.8	4.60	Metabolically diverse	Aquatic	3
12228™	Staphylococcus epidermidis	+	31.9	2.56	Thick cell wall	Skin/mucosa	5
700610™	Streptococcus mutans	+	36.8	2.03	Facultative anaerobe	Oral	5
17978™	Acinetobacter baumannii	-	39	4.34	Filaments, capsule	Environment	6
17982™	Actinomyces odontolyticus	+	65.5	2.39	Type 1 fimbriae	Oral	2
8482™	Bacteroides vulgatus	-	42.2	5.16	Anaerobe	Gut	7
700392™	Helicobacter pylori	-	38.9	1.67	Helix shaped	Stomach/gut	2
BAA-335™	Neisseria meningitidis	-	51.5	2.27	Diplococcus	Respiratory tract	4
33277™	Porphyromonas gingivalis	-	48.4	2.35	Anaerobe, collagenase	Oral	4
11828™	Propionibacterium acnes	+	60	2.56	Aerotolerant anaerobe	Skin	4
9027™	Pseudomonas aeruginosa	-	66.6	6.26	Facultative anaerobe	Skin	4
BAA-1556™	Staphylococcus aureus	+	32.8	2.82	Thick cell wall	Skin/respiratory	6
BAA-611™	Streptococcus agalactiae	+	35.6	2.16	Serogroup B	Vaginal/environment	7


Evaluation of ATCC[®] Microbiome Standards

Acinetobacter baumannii Actinomyces odontolyticus Bacillus cereus Bacteroides vulgatus Bifidobacterium adolescentis Clostridium beijerinckii Deinococcus radiodurans Enterococcus faecalis Escherichia coli Helicobacter pylori Lactobacillus gasseri Neisseria meningitidis Porphyromonas gingivalis Propionibacterium acnes Pseudomonas aeruginosa Rhodobacter sphaeroides Staphylococcus aureus Staphylococcus epidermidis Streptococcus agalactiae Streptococcus mutans

Acinetobacter baumannii

Genomic DNA Standards ATCC[®] MSA-1002[™] and MSA-1003[™]: 16S rRNA vs Shotgun Acinetobacter baumannii Actinomyces odontolyticus Bacillus cereus Bacteroides vulgatus 100% Bifidobacterium adolescentis 90% Clostridium beijerinckii Deinococcus radiodurans 80% Enterococcus faecalis 70% Escherichia coli 60% Helicobacter pylori Lactobacillus gasseri 50% Neisseria meningitidis 40% Porphyromonas gingivalis Propionibacterium acnes 30% Pseudomonas aeruginosa Rhodobacter sphaeroides 20% Staphylococcus aureus 10% Staphylococcus epidermidis Streptococcus agalactiae Expected ATCC® MSA-1003™ Expected ATCC® MSA-1002™ 16S 16S Shotgun Shotgun Streptococcus mutans

D

СĽ

Β

С

ATCC [®] No.	Analysis type	True positives (Detected/input)	Relative ratio (Correlation coefficient)	False positives (100 – false + penalty)	Overall score (Average of three sub-scores)
MSA-1000™	Shotgun	100%	52%	100%	84%
(Lot # 70001381)	16S (V1/V2)	100%	66%	100%	89%
MSA-1001™	Shotgun	100%	91%	99%	97%
(Lot # 70001382)	16S (V1/V2)	100%	89%	92%	94%
MSA-1002™	Shotgun	100%	59%	100%	86%
(Lot # 7001383)	16S (V1/V2)	100%	62%	98%	87%
MSA-1003™	Shotgun	100%	95%	95%	97%
(Lot # 70003365)	16S (V1/V2)	100%	92%	93%	95%
MSA-2003™	Shotgun	100%	28%	100%	76%
(Lot # 70003364)	16S (V1/V2)	100%	29%	99%	76%
MSA-2002™	Shotgun	100%	55%	100%	85%
(Lot # 70003365)	16S (V1/V2)	100%	48%	100%	83%

			Bacilius cereus	Present	3850537	11.20	10.00
Sample Metadata			Bifidobacterium adolescentis	Present	1352549	10.20	10.00
			Clostridium beijerinckii	Present	2673305	7.02	10.00
Sample preparation details & metadata	WGS sequencing of MSA-100		Deinococcus radiodurans	Present	1732663	8.43	10.00
Expand 😣			Enterococcus faecalis	Present	1804432	10.38	10.00
			Escherichia coli	Present	3320421	11.28	10.00
			Lactobacillus gasseri	Present	1160647	9.68	10.00
		Relative Abundance					
		Quantification of organisms in the control	86% °				
		Expand 🛛	10 organisms in control				-
			to organishis in control				

ONE CODEX

- Detect reference organisms by local alignment with high sensitivity
- 2. Convert the read counts to relative abundance using genome size or 16S rRNA copy number
- 3. Detect non-reference organisms (false-positives) using the One Codex Database (whole genome sequencing) or Targeted Loci Database (16S rRNA)
- 4. Display the "scorecard" with high-level accuracy scores and per-organism details True-positive, false-positive, and relative abundance scores

Figure 1. Combining the ATCC[®] Microbiome Standards with the One Codex data analysis platform. A) Work flow for analyzing data using the One Codex cloud-based web interface. B) The One Codex platform can be used to evaluate the number of true-positive, relative abundance, and false-positive scores for 16S rRNA and whole genome sequencing methods.

Figure 2. Evaluation of the ATCC[®] Microbiome Standards. A) ATCC[®] MSA-2002[™] was extracted using two different DNA extraction kits followed by profiling of the 16S rRNA V1/V2 region and shotgun genomic sequencing on the Illumina® platform. Data analysis was performed in the One Codex module. B) ATCC[®] MSA-2002[™] was profiled by both 16S rRNA and shotgun genomic sequencing methods by two different laboratories (MoBio kit, V1/V2 primers and Illumina[®] platform). C) ATCC[®] MSA-1002[™] and ATCC[®] MSA-1003[™] were profiled using the 16S rRNA V1/V2 region protocol and shotgun sequencing on the Illumina® platform. D) Scorecard analysis output from the One Codex data analysis module.

Summary and Conclusions

Overall, ATCC[®] Microbiome Standards combined with the One Codex data analysis module provide a comprehensive solution for assay development and process control monitoring for 16S rRNA community profiling and shotgun metagenomics methods used in microbiome studies.

Disclaimers

© 2017 American Type Culture Collection. The trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. Illumina® is a registered trademark of Illumina, Inc.

Acknowledgements

We would like to thank Nick Greenfield and Sam Minot from One Codex and Stefan J. Green, Director, DNA Services Facility, University of Illinois at Chicago for their valuable input during the development of ATCC[®] Microbiome Standards and the data analysis module.